
August 5, 2002 8:03 pm Judy IV Shop Manual
Judy IV Shop Manual

Original author: Alan Silverstein, ajs@fc.hp.com
Last update: 020131

Quick public excerpts created 020805
without rolling in other new material since 020131

hp

i n v e n t ? ...

Judy!
HP INTERNAL USE ONLY

Judy IV Shop Manual August 5, 2002 8:03 pm
HP INTERNAL USE ONLY Judy IV Shop Manual

August 5, 2002 8:27 pm Judy IV Shop Manual
1. Introduction ...5

1.1 Document Purpose and Audience...5
1.2 Document Title...6
1.3 Brief Overview of Judy...6

2. Background...9

2.1 Arrays and Digital Trees...9
2.1.1 Arrays and Alternatives...9
2.1.2 Digital Trees..10

2.2 Some “Judy Physics” ...12
2.2.1 Software Relativity (Time Versus Space) ...12

Optimal Versus Suboptimal...14
Practice Versus Theory ..14

2.2.2 The Caching Cliff ..15
Why Cache? ...16
Hashing Versus Caching ..18

2.2.3 Beating the Curve ...19
Digital Trees..19
The Bytes/Index Metric...22
Compressed Digital Trees ..22
Judy Population/Expanse Organization and Growth23

2.2.4 Beyond Beating the Curve..24
Judy Dynamic Ranges ...24

3. Smarter Digital Trees ...26

3.1 Judy Compression Tricks...26

4. Judy IV Data Structures ..27

4.1 Preliminary Notes ..27
4.2 Judy Array Pointer (JAP)..28
4.3 Root-Level Leaves ...29
4.4 Judy Population/Memory Node (JPM) ...31
4.5 Judy Branches ...33

4.5.1 Linear Branches..33
4.5.2 Bitmap Branches ..34
4.5.3 Uncompressed Branches ...37

4.6 Judy Pointer (JP) ...38
4.6.1 Basic JP Data Structure..38
4.6.2 Decode and Population Fields..39
4.6.3 JP Type Field..40

Null JP ...41
Branch JP...41
Leaf JP...41
Immediate Indexes JP..41
Full Expanse JP ..44

4.7 Linear Leaves ..44
4.8 Bitmap Leaves ...47
4.9 Symmetries..48

5. Usage of Data Structures ...50

6. Machine Dependencies...52

7. Working on Judy..53
HP INTERNAL USE ONLY page 1

Judy IV Shop Manual August 5, 2002 8:27 pm
7.1 Source, Intermediate, and Delivered Files...53
7.2 History Manager (SoftCM)...55

7.2.1 Convenient Shortcuts ...55
7.3 Makefile ...56

7.3.1 Makefile Concepts ..56
7.3.2 Using makelog ..57
7.3.3 Useful Parameters and Targets..58

7.4 Running and Debugging Judy ...60
7.4.1 Linking ..60
7.4.2 Debugging ..61
7.4.3 Code Coverage...61
7.4.4 Regression Tests..62

Regression Tests -- Examples ..64
Regression Tests -- Checkpointing ..65

7.5 Delivering Judy ..66
Examples of Judy Trees 67
Glossary/Lexicon 69
Judy Build and Delivery Key Control and Data Flows 79
Some of the Inventor’s Thoughts About Judy 80
page 2 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Introduction

jor
y for

ucture
cted

le at
trying

the

d

,
y.

ter

.

nts.
1. Introduction

{Note: Public excerpts version 020805 without rolling in all new material since previous ma
edit 020131. Deleted from the master copy all irrelevant material (such as how to build Jud
HPUX) and all material possibly still “trade secret” beyond what is disclosed by the source
package that was LGPL’d on SourceForge.net, 020627. Also there were some minor data str
changes, especially to bitmap branches and opportunistic uncompression, that are not refle
here, so the source code might seem out of sync in spots.}

This document is an internal specification! You should be familiar with the documents availab
the external or internal website, including the manual entries and application notes, before
to make sense of this one. Visit:

http://www.hp.com/go/judy # HP-external.
{http://sourceforge.net/projects/judy # LGPL sources, etc.}

“Sorry I wrote you such a long letter; I didn’t have time to write a short one.” (Sorry too, if
necessary, for my weak attempts at humor to lighten up this long document.)

1.1 Document Purpose and Audience

This document serves a variety of purposes:

● A collection point for internal tutorials and references to support maintaining and modifying
Judy code.

● A starting point for a new engineer on the team -- hopefully one that is both necessary an
sufficient.

● Explanation of Judy internals for outsiders, such as patent writers, managers, and peer
engineers. Much of this document grew out of trying to explain Judy to patent attorneys.

● Useful as a reference when trying to envision data structures. Lots of drawings.

This is the default location for all Judy internal concepts, terminology, drawings, guidelines
recipes, and magic spells. Completeness, correctness, and accessibility came before brevit“Put
all your eggs in one basket and --watch that basket.” -- Mark Twain (Is anyone watching the
basket? ... At least the information will be correct at one point in time when it is written... Af
that I can only hope it is kept current... Reader discretion is advised.)

This document doesnot contain:

● A list of Judy tasks, issues, or enhancement ideas; those are scattered around elsewhere

● Much Judy history.

● A lot of repetition of material already covered in external documents, including: Patent
applications; in README files; in source file comments; or in other Judy internal docume
Instead hopefully they are all referenced here when and where appropriate.
HP INTERNAL USE ONLY page 5

Introduction Judy IV Shop Manual August 5, 2002 8:27 pm

 to
this
Judy

eful to
lieu

ither.
gue

like

vided
orted
nt);
e-
ible,

pe of
le on
● Enough humor.“Trying to define humor is one of the definitions of humor.” -- Saul Steinberg

Note: This document was written using Framemaker for ease of including drawings and of
producing PDFs. If you must edit this document don’t panic, Framemaker is powerful, easy
learn, and portable. For simplicity this is a single, large, monolithic document. Unfortunately
document serves both tutorial and reference purposes and is not optimized for either. A new
engineer should read the entire document as a tutorial, but for other purposes it might be us
look up particular drawings or explanations, but there is no index, sorry. (Should there be?) In
of that you might find ‘‘Glossary/Lexicon’’ on page 69 useful.

Thanks to Quincey Koziol of NCSA for lots of useful feedback in December 2002.

1.2 Document Title

Why is this called a “Shop Manual”? It’s more than that, and perhaps not completely that, e
Well I didn’t want to call it an IRS (internal reference specification) because that’s kind of va
and it’s not a complete specification anyway. I toyed with names and the analogy to a shop
manual, at least in how it’s used, if not in what it contains, seemed most appropriate.

1.3 Brief Overview of Judy

Judy is a dessert toppingand a floor wax, but it’snot intended for use as a house paint.

API : Judy is a programming library that provides a relatively simple interface (API) for array-
storage of word or string indexes with optional mapping of indexes to single-word values.
(“Optional” means Judy1 does not, and JudyL and JudySL do; see below.) Functions are pro
to insert, delete, and retrieve indexes; search for neighbor indexes (present or absent) in s
order; count valid indexes in any range (subexpanse) or locate an index by its position (cou
and free entire arrays. So what’s special about that? Judy arrays are remarkably fast, spac
efficient, and simple to use. No initialization, configuration, or tuning is required or even poss
yet Judy works well over a wide dynamic range from zero to billions of indexes, over a wide
variety of types of data sets -- sequential, clustered, periodic, random.

There are three types of Judy arrays and corresponding classes of access functions:

● Judy1 -- bit array; map long word index to Boolean (true/false)

● JudyL -- word array; map long word to long word value

● JudySL -- word array with string index; map string index to long word value

Note that Judy1 and JudyL support fixed-size indexes, and JudySL supports a particular ty
variable-size indexes. These functions are documented in the Judy manual entries, availab
the website... ‘nuff said.
page 6 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Introduction

n
ers, it
ding
t each
ssion
his is
ory,
n

f
e
. Any
here
x, the

bytes.
es are

eft,
finite
nses,
When
ed and

such

s of
t
e

P-
X/

. The

e of
e we
t
 was
II to
Internally Judy is built using digital trees with highly adaptable nodes and a variety of
compression tricks. These are explained in great detail starting at ‘‘Smarter Digital Trees’’ o
page 26. Why is Judy special if it is a digital tree? Like other “sparse data set” data manag
adapts itself to the population it is used to store. However, unlike the others, it begins by divi
the “expanse” of the indexes (keys) by expanse, not by population. Adaptation then occurs a
level of the tree -- branch and leaf compression into linear and bitmap forms; index compre
based on remaining undecoded bits; level skipping based on “narrow pointers”; etc. All of t
done with a careful eye toward minimizing CPU cache misses, CPU time, and wasted mem
while maintaining source portability, broad dynamic ranges (see ‘‘Judy Dynamic Ranges’’ o
page 24), and minimal configuration or tuning.

A word about “expanses”. As we use the term, the expanse of a data structure is the range o
possible keys that can be used to address it. An unbounded variable-size key has an infinit
expanse. A fixed-size key has a finite expanse, such as 0..2^32-1 for a one-word (32-bit) key
subexpanse of any expanse is itself an expanse (albeit a smaller one), down to the point w
there is exactly one index left. For example, after decoding the first 2 bytes of a 4-byte inde
remaining two bytes have the expanse 0..65535, although perhaps offset by the leading 2
Decode another byte and the remaining subexpanse is 0..255; literally 0..255 if the first 3 byt
zero, otherwise offset by their value, say to 256..511 if the first 3 bytes are 0x000001, etc.

You can think of digital trees as peeling (decoding) leading bits off a key until only one bit is l
but in the case of an unbounded variable-size key there is no definite “bottom” (that is, a de
last bit or maximum length for every key). However, there are always unpopulated subexpa
except with a fixed-size key where every possible key value is stored in the data structure.
decoding keys top-down in this way, each (sub)expanse is defined by the bits already decod
the number of bits remaining (if finite).

A divide-by-expansehierarchical data structure has some special but unobvious properties,
as localizing insertions and deletions. Worst-case modify times are (rarely) perhaps 20x the
average times, and you never need to rebalance the whole tree. However, early exploration
digital trees apparently discarded them as memory hogs not worth pursuing further. It is no
obvious that the Judy approach can work, and work as well as it does, but the proof is in th
software. Which was hard to write... Even harder than this document. It’s amazing really...

Platforms: As of October 2001, the Judy libraries are available to external customers with H
UX PA32/64 releases beginning with 11i (11.11), June 2001; to internal customers for HP-U
IPF (previously called IA64) and Linux/IA32, Linux/IPF, and Win32 (object only) via HP-
internal web download; and hopefully later on other platforms including PowerPC and C++
code makes some assumptions about compilers and hardware, but as few as possible (see
‘‘Machine Dependencies’’ on page 52), and attempts to be as portable as possible.

Just a littlehistory: Judy grew out of explorations made by Douglas Baskins (see also ‘‘Som
the Inventor’s Thoughts About Judy’’ on page 80). Judy was named for Doug’s sister becaus
couldn’t think of a better name for it. A project team was formed to productize Judy in abou
January 2000. Judy III was made available by internal website in March 2000, and Judy IV
delivered to 11i OEUR for June customer shipments on April 2, 2001. The step from Judy I
HP INTERNAL USE ONLY page 7

Introduction Judy IV Shop Manual August 5, 2002 8:27 pm

peed
to

res
ed”

 with
bsite:
Judy IV turned out to be enormous and time-consuming... Obtaining a ~2x improvement in s
and space required ~5x lines of code and ~10x complexity, but we only lost 3-4 engineers
malnutrition during the implementation phase.

In retrospect this complexity is necessary due to the increased richness of the data structu
required for flexibility, as you will read about here, and also the iterative and “unrolled for spe
nature of the Judy software. One of the authors of UNIX said,“Controlling complexity is the
essence of computer programming.” -- Kernigan. However, in our drive for performance and
efficiency we discovered that a remarkable amount of complexity was unavoidable.“Everything
should be made as simple as possible, but not simpler.” -- Einstein

For more overview on Judy the reader is referred to the manual entries, the “Programming
Judy” book, various application notes, etc; all of which are available on the HP-external we

http://www.hp.com/go/judy/
page 8 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

more
ation

nough

s of the
r the
not
 bits
is a
e.

tly
y

ntly,
here,

exes
 each

xes
ion

emory
2. Background

2.1 Arrays and Digital Trees

2.1.1 Arrays and Alternatives

Suppose you want to map one or more keys, or equivalently, fields of a single key, to one or
related values. For example, suppose you want to map a phone number to a customer inform
record, referenced either as a memory address or a disk block address. If your key is short e
and you want speed and simplicity and you don’t care about memory or flexibility, you just
declare an array:

Usage: Each array value is looked up “positionally”, or “digitally”. This means multiplying the
index by the size in bytes of each value, and adding that offset in bytes to the base addres
array. This is fast to compute, and it results in memory access(es) (CPU cache fills) only fo
memory underlying the value of interest, typically only one cache fill. (Assuming the value is
already in cache.) At the computed address you find one “element” which is any number of
constituting the target value or data associated with the index. In many cases the element
single word pointer to an external memory location, or perhaps an address on mass storag

Problems: The problems with a simple array are that it can’t handle sparse indexes efficien
(where every possible index is not used or valid), and it can’t even pretend to have as man
elements as the index can have values, due to machine memory limitations.

Alternatives: There are many alternative data structures for representing sparse data efficie
such as binary storage trees, b-trees, skiplists, and hash tables. I won’t say much about them
except to note that hashing is essentially a way of converting sparse, possibly multi-word ind
(such as strings) into dense array indexes. The typical hash table is a fixed-size array, and
index into it is the result of a hashing algorithm performed on the original index. (See also
‘‘Hashing Versus Caching’’ on page 18 for a picture of how simple hashing works.)

The problems with hashing are:

● To be efficient, you must use a hash algorithm with good “spectral properties” for the inde
you will store, so each array index is equally likely to be used and synonym chains (collis
lists) remain short.

● You must size the hash table to match your data and hashing algorithm, again to keep m
usage down and keep synonym chains short.

● You must anticipate all uses of the data structure in order to tune it.

...

0 1 2 3 4 5 6indexes

values

Figure 1: Simple Array
HP INTERNAL USE ONLY page 9

Background Judy IV Shop Manual August 5, 2002 8:27 pm

it

ode to
h in

dant

, is

ed
 also

git”, a

a 4-

es 4
next
● Synonym management can be complex and/or destroy performance.

● Hashing causes myopia and possibly even brain damage among programmers who use
frequently.

Copy of index: Note that hash tables (and many other data structures) require every data n
contain a copy of (or a pointer to) the original index (key) so you can tell which node is whic
each synonym chain (or other type of collision list). If you don’t need it, this is a bug (redun
data); if you do need it, it’s a feature (self-identifying nodes outside the hash table context).

2.1.2 Digital Trees

In practical applications the index set, that is, the set of interesting valid (stored) key values
often sparse, such as phone numbers. For handling sparse index sets at the cost of more
indirections, that is, memory references (and possibly CPU cache fills), but often less wast
memory than a sparse, flat array, one alternative is a “digital tree”, also called a “trie”. (See
Knuth Volume 3. But not right now, you won’t be back for a week...)

Whereas a flat array “decodes” the entire index in one address calculation as one large “di
simple trie is a tree of smaller arrays (“branch nodes”), each of which decodes 1..N bits of the
index. The “order” of the digital tree is 2^N, and each “digit” consists of N bits. For example,
bits-per-level digital tree has 16-way nodes. Given the decimal number (index) 1157, the
equivalent hexadecimal is 0x485, and if each digit has 4 bits, the digits are 4,8,5.

In this example, the three levels of the digital tree decode 3 digits (4-bit nibbles) with the valu
(binary 0100), 8 (1000), and 5 (0101). Each element contains at least 1 word, a pointer to the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2a: Digital Tree, 16-way

root pointer points to start of top-level branch

pointer at offset 4 points to start of next branch

pointer at offset 8 points to next branch

pointer at offset 5 points to memory or disk

target data
page 10 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

so

 This

mory

 the

ith
 given

d in a
ndex

inters

rtional

set out

.)

e
edge
level (branch), but could contain multiple words, so long as all elements are the same size
address offsets are computable.

Another example would be using ASCII digits, such as in a phone number, in a digital tree.
picture shows the first two levels of decoding the phone number 581-2526.

At the “bottom” of the digital tree, the last branch decodes the last bits of the index, and the
element points to some storage specific to the index. The “leaves” of the tree are these me
chunks for specific indexes, which have application-specific structures.

Digital trees have been used for dictionaries, where each branch width is, say, 26 letters of
alphabet.

Advantages: A digital tree allows rapidly accessing an arbitrarily large index (series of bits) w
no memory allocated in the branches where there are no indexes (zero population) under a
digit (expanse). The pointer corresponding to such digits is null. Furthermore, indexes store
digital tree are naturally accessible in (left-to-right) sorted order, and the neighbors of any i
can quickly be located even though the index set is sparse and has large gaps.

Disadvantages: The higher the order of the digital tree, that is, thewider each branch and the
more bits decoded by each digit, the greater the amount of memory that is wasted in null po
for empty expanses. On the other hand, thenarrower each branch, the more indirections (and
possibly CPU cache fills) are required to access any index. Generally, access time is propo
to the number of significant digits in the index.

Because of the disadvantages, digital trees were not seriously used in the past. Doug didn’t
to master them, either, he just stumbled into them out of necessity.“Mater artium necessitas.”
(Necessity is the mother of invention, as Doug is fond of saying, though usually not in Latin

-- Prior art : Since the preceding was written I have read a lot of academic articles and som
textbook sections about the theory and variety of digital trees. There’s a whole body of knowl

0 1 2 3 4 5 6 7 8 9

Figure 2b: Digital Tree, 10-way

0 1 2 3 4 5 6 7 8 9

...

root pointer
HP INTERNAL USE ONLY page 11

Background Judy IV Shop Manual August 5, 2002 8:27 pm

rant
 data
talk
 Judy

-size
ord

We

ritten
ysics
ow

ory,
PU
I won’t repeat here. I will just summarize by observing that most prior art seemed rather igno
of caching issues, probably for portability reasons, and also had a rather myopic desire for
structure simplicity. (Possibly due to excessive experience with hashing.) A few papers did
about “hybrid” digital trees with variable branch and leaf nodes, but none came close to the
features.

On the other hand, all of the ~15 external papers I read focused on theories involving variable
keys. But Judy grew out of a need to handle fixed-size keys, in particular, mapping single-w
indexes to single-word values. Judy1 and JudyL still operate on fixed-size keys only, but we
learned a lot about what I now call “meta-tries” such as JudySL that build on top of JudyL.
think Judy1 and JudyL solve problems of practical if not theoretical interest, and that JudyL
supports meta-tries well for addressing variable-size key problems. Yes, I admit we are,
academically speaking, a bunch of backwoods hicks, but wedo know how to program for
performance!

2.2 Some “Judy Physics”

This section was adapted from a separate, earlier “Judy IV Concept Drawings” document w
mainly to give as a slide presentation. While of course Judy does not violate any laws of ph
(as far as we know), and in fact it does not reveal anything new about physics (only about h
programmers think), some informal analogies may be helpful in understanding why Judy is
special and how it operates.

2.2.1 Software Relativity (Time Versus Space)

Traditionally, computing problems trade off time and space. If you spend more space (mem
either RAM or disk), you can solve the same problem faster; and if you spend more time (C
time and/or real time), you can solve the same problem using less space (memory).
page 12 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

ling

t

Theoretically you can represent the tradeoff like this.

The frequent relationship between time and space in software engineering gives me an ink
that there might exist a “general theory of software relativity”. It would be cool if there was a
uniform way to make time/space tradeoff decisions. But that’s a digression from the presen
discussion.

“Time is an illusion perpetrated by the manufacturers of space.”

tim
e

(C
P

U
 o

r
re

al
)

space (memory or disk)

Figure 3: Time/Space Tradeoff
HP INTERNAL USE ONLY page 13

Background Judy IV Shop Manual August 5, 2002 8:27 pm

ooth
2.2.1.1 Optimal Versus Suboptimal

It’s entirely possible, and all too frequent, to do worse than the theoretical optimum:

2.2.1.2 Practice Versus Theory

Also, in practice the possible ways to solve a given problem are usually quantized, not a sm
spectrum, so the best possible algorithms are a collection, not a curve:

tim
e

(C
P

U
 o

r
re

al
)

space (memory or disk)

theoretical limit for a given problem

actual solution at this time

actual limit for the talents of this programmer

Figure 4: Suboptimal Time/Space Tradeoff

(your mileage may vary)

tim
e

(C
P

U
 o

r
re

al
)

space (memory or disk)

theoretical limit for a given problem

some possible “best” solutions

some other less-optimal solutions

Figure 5: Quantized Solutions
page 14 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

r of
ost

r
g
ut it
t for
If this
 time

mple,
b

small
ry
(such

or
 and
he
gister
2.2.2 The Caching Cliff

Now, the preceding drawings illustrate behavior for a given “problem size” -- a fixed numbe
data points, keys, or indexes. Changing the X axis from space to population, observe that m
problem solutions have an interesting but frustrating behavior:

What happened here? The problem solution (software) encountered some sort of non-linea
resource limit. Most of the time this means running out of RAM and having to start swappin
memory pages to disk (“virtual memory”). The computer “caches” disk blocks in memory, b
can’t hold a whole disk worth of data in memory (or we’d just dispense with the disk, excep
non-volatile backups). So the disk cache in memory is a limited resource that can run out.
gets bad enough, the computer spends most of its time swapping (thrashing) and very little
making progress on the problem. Hence the saying, “Thrashing is virtual crashing.”

Another type of caching we use all the time and take for granted is network caching. For exa
you skip (and update) the local cache when you use the Reload or Refresh button on a We
browser to refresh a page of interest from the Web server.

A relatively recent type of caching of special interest to Judy is CPU cache lines. These are
(such as 16-word) blocks of a relatively small pool of very fast memory (such as 1-2Mb) ve
close to the processor, sometimes on the same chip, sometimes consisting of multiple levels
as L0, L1, and L2 cache). These cache lines are used to avoid delays due to reading from
writing to RAM (!), which can be 30-150 times slower than a cache hit. Modern processors
compilers try to make effective use of the CPU cache, but their intelligence is limited, with t
result that assembly-level execution profiles show inordinate amounts of time attributed to re
load and store instructions (or equivalents) due to cache fill delays.

tim
e

(C
P

U
 o

r
re

al
)

problem size (population = number of keys/indexes)

a bad thing happens about here

Figure 6a: Caching Cliff (Upwards)
HP INTERNAL USE ONLY page 15

Background Judy IV Shop Manual August 5, 2002 8:27 pm

s and
es
I call

ing
The “knee” in the theoretical curve above can also be due to running out of CPU cache line
having to load instructions or data more often from RAM. Of course this happens many tim
faster than loading data from disk, but the net effect on program performance is the same.
this effect, “Falling off the caching cliff.”

Never mind that in this case the cliff falls off upward. I could flip over the curve by plotting
problem solutions per second, or something like that:

2.2.2.1 Why Cache?

“Real programs don’t eat cache.”

A brief digression... Why do computers bother to do any kind of caching? Caching adds
complexity -- the software must worry about cache coherence, purging, flushing, and avoid

cu
st

om
er

 tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

number of customers in database

a bad thing happens about here

Figure 6b: Caching Cliff (Downwards)
page 16 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

r a

sed
hes,
falling off the caching cliff. Still, caching is very useful any time two entities communicate ove
relatively slow path, or where one entity is significantly faster than the other:

The purpose of a cache is to avoid unnecessary reloads of “hot” data that is likely to be reu
soon or frequently. It is not primarily intended to support block transfers of data, nor prefetc
although caches are sometimes used this way by smart programs.

CPU cache lines exist because CPUs are getting so much faster than RAM.

entity 1 entity 2

network host network host

slow link

with cache with cache

fast SPU or CPU slow disk or RAM

sufficiently fast link

with cache

Figure 7: Linked Entities
HP INTERNAL USE ONLY page 17

Background Judy IV Shop Manual August 5, 2002 8:27 pm

rs of
e or

 hashed
ne

er to
es the

ws a
ir
ing

ig it is
onym

he keys
2.2.2.2 Hashing Versus Caching

Another brief digression... A common solution for rapid and efficient access to large numbe
sparsely allocated “keys” is to hash their values and do a lookup through a hash table to on
more “synonyms” in a “synonym chain:”

Here the keys 1, 8, and 97 are hashed to offset 1 in the hash table, and keys 15 and 69 are
to offset 8. The hash algorithm can be as simple as, say, “take the last four digits of the pho
number or SSN,” if that spreads out the keys well across the hash table, or quite a bit more
complex, and often surprisingly time-consuming.

It takes some CPU time to compute the hash value, one CPU cache fill to look up the point
the first synonym in the chain, and one cache fill to access each synonym to check if it match
key being looked up.If the hash algorithm is well-fitted to theactual key values,and the hash
table size is well-fitted to thenumber of key values (usually within a factor of 2), then hashing
can perform very well.

A balanced hash table has short, uniform-length synonym chains. The above example sho
very unbalanced hash table... Which is all too common in practice as datasets outgrow the
initially tuned algorithms without the software owners noticing (or in some cases even know
how to retune the code).

Hashing has two other significant drawbacks. First, the value of each key, no matter how b
(consider a long character string), must be stored in or pointed at by the corresponding syn
node in order to disambiguate the nodes. Second, hashing almost necessarily randomizes t
as they are stored, so sorting is a whole ‘nother proposition.

keys hash table

hash
algorithm

1

8

15

69

97

8 97 1

15 69

0

1

2

3

4

5

6

7

8

9

10

Figure 8: Hashing

synonym chain (collision list)
page 18 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

L to
.. We
ng”.

aking)

ng

ainly
the
only,

’’ on
se, as
r of

 top of
raight
-- After the preceding text was written, Doug discovered a way to merge hashing and Judy
obtain the best of both. This is documented as an application note on the external website.
call it “scalable hashing”, but I hope someday it proves out and is known as “Baskins hashi

2.2.3 Beating the Curve

Putting the preceding together, Judy beats the theoretical curve (at least metaphorically spe
essentially by...

● spendingmore CPU time,
● in order to store the dataset inless memory,
● that can be accessedmore efficiently,
● resulting inless real time spent on solving the problem,
● due to avoiding falling off the caching cliff (for CPU cache lines), while simultaneously usi

an acceptable amount of space (memory) per key.

Of course Judy can’t break any physical laws, but it takes advantage of new knowledge, m
cache fills, to do the seemingly impossible. You can think of it this way. Note that in this plot,
Y axis is relabeled as real time only, not CPU time, and the X axis is relabeled as memory
not disk space:

2.2.3.1 Digital Trees

I won’t rehash here what a digital tree is, that’s already covered elsewhere (see ‘‘Digital Trees
page 10). What you need to know here is: A straight digital tree is not very attractive becau
the tree is made narrower and deeper to save memory with a sparse index set, the numbe
potential or average cache fills increasesfaster than the amount of memory saved by pruning
empty expanses. The tree depth affects the number of indirections required to get from the
the tree to a specific index. Of course, “faster” is a relative term, but for most problems a st

tim
e

(r
ea

l)

space (memory)

theoretical limit for a given problem

Judy operates here

caching “tunnel”

Figure 9: Beating the Curve
HP INTERNAL USE ONLY page 19

Background Judy IV Shop Manual August 5, 2002 8:27 pm

ms, or

ses of
l)

dex

e
rrible

n a
 is
.

tep:
 cache
mory.

on)

gets
n also
0), the
digital tree requires too much memory for obtaining a speed increase over other mechanis
else if the amount of memory is reasonable, the speed is lower (more cache fills).

Note: It’s always possible that a needed chunk of data is already in the cache, but for purpo
design and discussion, we assume it is not, so any indirection through a random (non-loca
pointer is counted as a cache fill.

Note: As described in ‘‘Digital Trees’’ on page 10, a digital tree divides up the population (in
set) uniformly byexpanse (dividing and redividing the initial expanse evenly), while other
methods, such as b-trees, divide up the population by the distribution of thepopulation itself. The
latter seems superior, but consider the need to keep the tree “balanced” so roughly the sam
population exists under each path at each level. This costs a lot of time, and can lead to te
worst-case insert/delete performance.

The following table summarizes a representative spectrum of possible N-way digital trees o
32-bit system. “Order” is the number of pointers that can be followed at each branch, which
typically 2^digit-size, where “digit-size” is the number of index bits decoded at each branch

Note that a flat array is a degenerate digital tree where the entire index is decoded in one s
address of element = array base address + (index * element-size); a look up takes just one
fill. However, to store, say, 2^32 indexes in a flat array requires an enormous amount of me
This is very wasteful if, say, only 1 million indexes are stored out of the 2^32 = 4G (giga = billi
possible values. (Population = 1M, expanse = 4G.)

By narrowing the branches and decoding fewer bits from the index at each level, a digital tree
deeper (more indirections = cache fills), but when the tree is very sparse, more memory ca
be saved. In a “wide branch”, say 256-way, when there are few populated expanses (say 1
others (246) must be null pointers.

Table 1: Cache fills for different-width digital trees

Order of tree
(N-way)

Bits decoded per
level (branch)

Indirections = cache
fills

2^32 = flat array 32 = whole word 1

256 8 = byte 4

16 4 8

8 3 10.67

2 = binary tree 1 = bit 32
page 20 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

n:

ice of
verall

ore
is the
Here’s a picture to illustrate how digital trees are less than ideal due to memory consumptio

In fact the upper curve is not smooth, no more than the theoretical bottom curve. Each cho
branch width results in a different amount of memory used, depending on the index size (o
expanse):

The exact placement of the circles also depends, of course, on the population of the tree. M
heavily populated trees take more memory but have a lower number of bytes/index, which
ultimate measure of space used or wasted.

tim
e

(C
P

U
 o

r
re

al
)

space (memory or disk)

theoretical limit for a given problem

digital tree behavior

large flat array is way
out there someplace

Figure 10a: Digital Tree Behavior

tim
e

(C
P

U
 o

r
re

al
)

space (memory or disk)

theoretical limit for a given problem

2^N-way
(flat array)

256-way

16-way

8-way

2-way

Figure 10b: Digital Tree Behavior (Quantized)
HP INTERNAL USE ONLY page 21

Background Judy IV Shop Manual August 5, 2002 8:27 pm

exes

x to
 in

hile

tal
Judy
2.2.3.2 The Bytes/Index Metric

Bear with me for another brief digression... One measure of the space efficiency of a data
structure is the total amount of memory required by it, divided by the number of keys or ind
stored -- that is,bytes per index. For example, a simple, singly-linked linear list with 1-word
values uses 3 words = 12 bytes/index on a 32-bit computer:

We think it’s impressive that JudyL, which maps a word to a word, often uses < 10 bytes/inde
do the job,even while it does it very fast. Consider how long it might take to look up an index
a lengthy linear linked list, especially if each pointer required another cache fill.

2.2.3.3 Compressed Digital Trees

In short, Judy gets the time (minimum cache fill) efficiencies of wide, shallow digital trees, w
consuming only a reasonable amount of memory, by compressing unused expanses out of
branches and leaves. The compression tricks are explained in more detail in ‘‘Smarter Digi
Trees’’ on page 26. Here I’ll just summarize the types of objects used to build the 256-way
digital tree... Think of this as a preview, and don’t panic if it’s incomplete or overwhelming.

Table 2: Judy object types

Linear Bitmap Uncompressed

Branch count of populated subex-
panses, followed by an
ordered list of populated
subexpanse numbers
(each 0..255), followed by
a matching list of pointers
to next-level objects

256 bits, each represent-
ing whether one corre-
sponding subexpanse is
populated or empty, inter-
spersed with 8 pointers to
8 ordered lists of up to 32
next-level pointers each

standard digital branch;
an array of 256 pointers to
next-level objects; some
pointers are null for
empty expanses

Leaf same as linear branch,
except for Judy1 there are
no pointers, and for
JudyL there are value
areas instead of pointers

same as bitmap branch,
except for Judy1 there are
no pointers, and for
JudyL there are value
areas instead of pointers
[and for 64-bit it’s 4 sub-
sidiary pointers]

no equivalent; not
needed; a leaf cannot
grow beyond a certain
size for multiple remain-
ing undecoded index
bytes, and a bitmap suf-
fices for 1-byte indexes

pointer

value

index

pointer

value

index

pointer

value

index

Figure 11: Linked List
page 22 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

 fills.

-bit
ociated a
ts in
nd-tier

t-tier
whole

s

,
used

r you
 if it

ranch
on a
ssed

index
etails
Some points to note:

● A linear branch takes 1 cache fill to traverse. A Judy bitmap branch always takes 2 cache
An uncompressed branch, being a simple array, takes 1 cache fill.

● Bitmaps are divided into 8 subexpanses of 32 bits (sub-subexpanses) each [except on 64
systems, bitmap leaves have 4 subexpanses of 64 bits each]. Each subexpanse has ass
first-tier pointer that’s non-null if any of the corresponding 32 bits is set. otherwise null. Bi
the bitmap must be counted to determine the offset of the next-level pointer in each seco
list of sub-subexpanse pointers.

● There are no null pointers in linear or bitmap branches, except in a bitmap branch the 8 firs
pointers can be empty if none of the 32 corresponding sub-subexpanses is populated. The
point is to “compress out” the null pointers for the unpopulated expanses so no memory i
wasted, even on the null pointers themselves.

2.2.3.4 Judy Population/Expanse Organization and Growth

Here’s a drawing illustrating the way the different Judy data structures organize the indexes
dividing them by population (P) or by expanse (E), and how the different data structures are
as indexes are inserted and the Judy array grows. This drawing will make more sense afte
read about the data structures in more detail in ‘‘Judy IV Data Structures’’ on page 27, and
doesn’t, well, my email address is ajs@fc.hp.com.

When a linear branch overflows it becomes a bitmap branch, unless the population of the b
or the whole array is high enough to “amortize” the cost of an uncompressed branch (2Kb
32-bit system) while keeping the bytes/index low, in which case it’s replaced by an uncompre
branch instead. In fact, this can happenbefore the linear branch overflows. Likewise, when a
bitmap branch has sufficient population, or when the whole tree has a good enough bytes/
during insertion into a bitmap branch, it’s converted to an uncompressed branch. (020130: D
are in flux and subject to further tuning.)

Linear Bitmap Uncompressed

Leaf

Branch P E+P E

P
E (Judy1)
E+P (JudyL) (none)

(populated expanses
only)

(bitmap is by expanse;
pointers for populated
expanses only)

(simple array by
expanse)

(only JudyL has
associated value areas)

Figure 12: Judy Population/Expanse Organization and Growth
HP INTERNAL USE ONLY page 23

Background Judy IV Shop Manual August 5, 2002 8:27 pm

der a
se
 can

ath
PI to

udy’s
, with
ry...

ense,
 allow

tice,
t case.

t
der,
Similarly, when a linear leaf overflows it grows into a bitmap leaf, but only if the remaining
undecoded index size is 1 byte; otherwise the leaf is either “compressed to a lower level” un
narrow(er) pointer, or else replaced by a new branch and “immediate” indexes (not otherwi
discussed here) and/or more leaves. Meanwhile, a bitmap leaf cannot overflow; the bitmap
always represent 256 1-byte indexes.

2.2.4 Beyond Beating the Curve

When Doug “discovered” Judy by “reinventing” digital trees, he did not foresee where the p
would lead into branch and leaf compression. However, he did realize early on that the UI/A
the Judy code would be remarkably simple -- “think of it as an array”.

As we developed Judy we set challenging goals for “balancing” many different aspects of J
performance. We want Judy to be usable in an opaque way, in a wide range of applications
no optimization or tuning required -- or perhaps even possible. Hence the following summa

2.2.4.1 Judy Dynamic Ranges

Judy should be equally “good”, or nearly so, across all of the following:

● Population: 0, 1, ..., N, ..., “infinite”

(or at least practically so, for a given machine word-size and memory)

Judy supports small arrays as well as huge ones, although arrays known to be small, d
and fixed-size are better implemented as simple arrays rather than in Judy. Use Judy to
for a large or unpredictable population.

● Population type: Sequential .. clustered .. periodic .. random

Behavior should be roughly equivalent regardless of the nature of the index set; in prac
within an order of magnitude for speed and space. In practice, random data is the wors

● Performance:

TBD: Replace the ratings above with typical numbers.

● Plus sorting/searching!

These features come “free” by the nature of Judy. Indexes are sorted in fixed orders tha
usually (but not always) are meaningful to the caller and allow rapid access in sorted or

Table 3: Judy Time/Space Performance

Average Worst case

Time (usec/operation)
Insert/delete “good” “good”

Retrieve “excellent” “good”

Space (bytes/index) “excellent” “good”
page 24 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Background

 does

ays,
bout
including neighbor searching. This could be a desirable side-effect feature that hashing
not offer.

● Plus counting!

Judy array counting capabilities allow fast solutions to problems in novel or unexpected w
such as determining data density or stack depth. See for example the application note a
the disk Work Load Analyzer on the external Judy website.
HP INTERNAL USE ONLY page 25

Smarter Digital Trees Judy IV Shop Manual August 5, 2002 8:27 pm

hes to

cover
mple,
ther,
ably
sion
de that

on’’
y the

r both
l)

data
 fills

the

.}
3. Smarter Digital Trees

The essence of Judy is to combine the advantages of the digital tree with smarter approac
handling “branches”, that is, interior (non-terminal) nodes in the tree, and “leaves”, that is,
terminal nodes in the tree. While this might seem obvious in retrospect, the path taken to dis
the (hopefully) optimal data structure has been torturous and anything but obvious. For exa
what seemed to work well for one type of data, such as clustered, did not work well for ano
such as random. And, believe it or not, even if you understood all of the following, you prob
still could not write the Judy code correctly; it’s very tricky. Other features beyond compres
are also needed, such as, “always keep the tree in its least compressed form,” and, “write co
is portable but still runs fast.”

If you encounter any terms that confuse you, bear in mind the existence of ‘‘Glossary/Lexic
on page 69. I can’t promise you’ll come back from there enlightened, but at least it might sa
same thing in a different way and you can laugh at the inconsistencies.

3.1 Judy Compression Tricks

Judy uses a number of tricks to minimize both memory space and overall compute time, fo
lookups and modifications (insert/delete), while attempting to keep worst-case (pathologica
behavior acceptable forany (unpredictable) index set, and for any insertion/deletion toany index
set. (See also ‘‘Beyond Beating the Curve’’ on page 24.) Most of the tricks used are forms of
compression. These tricks help Judy reduce space (memory required), minimize cache line
required, and thus reduce execution time (the real goal) more than enough to make up for
additional CPU instructions required to support the tricks.

The text in this section was used to map out {some Judy patent applications}...

{Remainder deleted, sorry, you don’t need to read this to understand the released software
page 26 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

]
.h
o be

ated

er

 three

mall

on.

not
n

o be

t the
ays at
4. Judy IV Data Structures

Here’s a summary of the Judy IV data structures for Judy1 and JudyL for 32-bit [and 64-bit
systems. The real and current definition is in the Judy1.h, JudyL.h, and JudyPrivateBranch
header files, but hopefully this presentation is easier to assimilate (even if it also happens t
wrong, becomes wrong over time...“Half of what we taught you is wrong -- and we don’t know
which half.” -- Neifert)

Note: JudySL is “merely” a meta-trie built using JudyL arrays as branch nodes. See the rel
application note on the Judy external website.

This discussion proceeds more or less “top down” through the structures.

● Judy Array Pointer -- more commonly called a “root pointer”

● Root-Level Leaves -- for small arrays

● Judy Population/Memory Node (JPM) -- top node of larger arrays (trees)

● Judy Branches: Linear, Bitmap, Uncompressed -- the interior (non-terminal) nodes of larg
trees

● Judy Pointer (JP) -- the “rich pointers” (also called subexpanse pointers) that populate all
types of branches:

• Basic JP Data Structure

• Decoding and Population

• JP Type Field -- especially including Immediate Indexes

● Linear Leaves -- for populations too large for immediate indexes but otherwise relatively s

● Bitmap Leaves -- for level-1 leaves with high populations

4.1 Preliminary Notes

Miscellaneous notes before getting into the details...

Examples of Judy trees are in ‘‘Examples of Judy Trees’’ on page 67 as well as in this secti

Cache line size: Judy assumes a CPU cache line is always 16 words = 64 [128] bytes. This is
true on IA32 machines (cache line = 8 words) and possibly on some PA-RISC machines. O
systems with smaller cache lines the code still works but not as fast. In general Judy tries t
cache-efficient without being too machine-dependent.

Tree level: Data storage trees are traditionally drawn with the levels numbered 1..N starting a
root of the tree. Judy trees are numbered bottom-up instead, meaning the root pointer is alw
level 4 [8], for several reasons.
HP INTERNAL USE ONLY page 27

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

t that

pler

ieldy

 to

r
ned to
 root
inter
● The level of a node in the tree is equal to the number of undecoded index bytes remaining a
level.

● Similarly, the size of thePopulation field (in bytes) is equal to the level at which the field
appears in a branch in the tree.

● Both 32-bit and 64-bit trees look the same in the lower 4 levels, which makes for much sim
common source code.

● This numbering convention works well for expanse-based digital trees, but would be unw
for purely population-based types of trees.

Judy1/JudyL: Remember, Judy1 maps indexes to “valid/invalid”, while JudyL maps indexes
one-word value areas (in addition to noting which indexes are valid).

4.2 Judy Array Pointer (JAP)

A Judy Array Pointer (root pointer) is 1 word = 4 bytes [8 bytes] containing an ordinary pointe
(memory address) that points to a Judy array, except that it always references an object alig
at least a 2-word = 8-byte [16-byte] boundary. Hence the 3 [or 4] least significant bits of the
pointer would always be 0, and are usable to encode the type of object to which the root po
points. [In fact only the least 3 bits are needed and used, even on 64-bit systems.]

TheJAP Type field is defined as follows:

Table 4: Judy Array Pointer (JAP) Type values

JAP Type Meaning

0 if address is also 0, an empty Judy array; otherwise invalid root pointer

1 JudyL root-level leaf containing exactly 1 index

2 JudyL root-level leaf containing exactly 2 indexes

3 JudyL root-level leaf with aPopulation word and >2 indexes

4 Judy1 root-level leaf containing exactly 2 indexes,
or an invalid JudyL root (array) pointer

po
in

te
r

T JAP Type = 3 bits

address = 29 [61] bits32-bit [64-bit] word:

Figure 13: Judy Array Pointer (JAP)
page 28 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

e of a

in
s (or
r be a
In fact
rtcut

 do
ave

le. We

t by
el

l value
op0”
TheJAP Typevalues are distributed so as to maximize the odds of detecting inappropriate us
Judy array pointer by a caller, such as passing a Judy1 pointer to a JudyL function.

The “invalid JudyL root pointer” value (4) is reserved (see JLAP_MASK and JLAP_INVALID
Judy.h) to allow applications to construct arbitrary-shaped trees (meta-tries) of JudyL array
even JudySL arrays, but not both mixed in one meta-trie) where each array value can eithe
pointer to another Judy array or to some other non-Judy object defined by the application.
this feature is used by JudySL to construct trees of JudyL arrays including pointers to “sho
leaves” in place of subsidiary JudyL arrays.

020130: Reader feedback: “...the different cases that you optimize for are very quirky. Why
you spend so much effort to optimize for root-level leaves with only 1 and 2 indices? I would h
thought that using the JAP Type values for other variations of nodes would have been more
beneficial...”

-- To make it possible to have huge numbers of small arrays, with good memory efficiency.
However, this depends on the nature of the underlying memory manager and is still debatab
might get rid of them in the future.

4.3 Root-Level Leaves

If a Judy1 array has a small enough population, it can fit into a singleroot-level leaf, up to 2
cache lines (16 * 2 = 32 words) in size, that typically contains aPopulation(P) word plus up to 31
additional words, each holding a 4-byte [8-byte] index.

Note: Technically a root-level leaf is a type of linear leaf aside from the population word, bu
convention we refer to root-level leaves separately. In some cases you might read, “root-lev
linear leaf”, which is just a fancier name for a root-level leaf.

Note: Population values are always stored minus 1 from the actual value because the actua
can range 1..2^N, and 0..2^N-1 fits in an N-bit field. In the code we use the variable names “p
for the minus-1 value and “pop1” for the actual value to avoid confusing them.

5 JudyL top-level branch (L, B, or U under a JPM, see ‘‘Judy Population/
Memory Node (JPM)’’ on page 31)

6 Judy1 root-level leaf with aPopulation word and 1 or >2 indexes

7 Judy1 top-level branch (L, B, or U under a JPM, see ‘‘Judy Population/
Memory Node (JPM)’’ on page 31)

Table 4: Judy Array Pointer (JAP) Type values
HP INTERNAL USE ONLY page 29

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

box is

Judy
 to
root-

JudyL
lue
Here are examples of Judy1 root-level leaves, pointed at by root pointers, where each small
1 word:

To support large numbers of small Judy1 arrays, the 2-index root-level leaf is special. The
memory manager code issues memory chunks in units of 2, 4, 6, 8, 12, 16, 24, 32... words
minimize fragmentation. Hence both 1-index and 2-index Judy arrays are stored in a 2-word
level leaf (the smallest memory chunk). The 2-index root-level leaf contains noPopulationword,
so instead the JAP’sType field specifies “2 indexes”:

The preceding pictures show root-level leaves without value areas, that is, for Judy1 arrays.
arrays must associate a value area with each index. Hence JudyL root-level leaves have va

P

P

P

P

I

I1

I1

I2 I3

I3 I5I2

I2

I4

I4

I3

1 index, P=0 (the smallest non-empty Judy1 array)

3 indexes, P=2

4 indexes + 1 unused word, P=3

Figure 14a: Judy1 Root-Level Leaves

I1

root pointer

root pointer

root pointer

root pointer

... (largest leaf)I29 I31I30

I1 2 indexes, P=1 (but no P word in structure); see JAP Type 4 in Table 5

Figure 14b: Judy1 Root-Level Leaf with Population 2

I2

root pointer
page 30 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

 a 1-

n exist
during
ssible.

f
a JPM

wed

 a
n page
areas, are allowed to grow to 4 cache lines rather than 2, and it makes sense to distinguish
index leaf, as well as a 2-index leaf, from a multi-index leaf.

Note: Value areas are actually offset to an aligned location, meaning some unused words ca
between indexes and values. In general, alignment is used so fewer bytes must be moved
most insertions or deletions. That is, the insertions or deletions happen “in place” where po

4.4 Judy Population/Memory Node (JPM)

A Judy Population/Memory node is used when a Judy tree’s population is large enough to
support the JPM by “amortizing” the memory required for it over a large enough population o
indexes. Once a root level leaf fills (exceeds 31 indexes), the root pointer always points to
instead of a root-level leaf or a branch, and the JPM in turn points to a linear, bitmap, or
uncompressed branch. -- Why not directly to a leaf? A leaf of full-word indexes up to the allo
size (2 cache lines) would simply be a root-level leaf, and for any lower-level leaf to reside
directly under a JPM it would have to be under a narrow pointer, but a JPM cannot contain
narrow pointer because there aren’t enough bytes in a JP (see ‘‘Basic JP Data Structure’’ o
38), even in the JP within the JPM, to holdDecodeplusPopulationbytes, and for code efficiency
the JPM’s JP is treated like all others. This will become clearer as you read on.

(largest leaf)

I V 1 index (the smallest non-empty JudyL array); see JAP Type 1 in Table 5

3 indexes, P=2, 1 unused word in memory chunk

Figure 14c: JudyL Root-Level Leaves

I1 I2 V1 V2 2 indexes; see JAP Type 2 in Table 5

P I1 I3 V2I2 V1 V3

P I1 I3 ...I2 V2I4 V1I31 V3 ...

root pointer

root pointer

root pointer

root pointer

V31
HP INTERNAL USE ONLY page 31

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

the

n at

ted
dy1.h

el

are

 JPM.

ree
heck
the
s the

own
The structure of a JPM is as follows, where each narrow rectangle is 1 word.

The only field in the JPM absolutely required to make the tree work is theJP Typesubfield in the
top JPfield. See ‘‘Judy Pointer (JP)’’ on page 38 for details about JPs. The rest of the fields in
JPM support simpler and more efficient tree traversal and modification software.

● Thetotal population field prevents having to add up the population (of all the JPs) in a top
branch.

● Thetop JPfield (2 words) allows entry to tree traversal code with a JP always available, eve
the top level of the tree. However, not all subfields or JP types in thistop JPare used; see ‘‘Basic
JP Data Structure’’ on page 38.

● The last index, last JP, andmisc fields (the last of which includes last-offset and last-pop0
subfields not shown above) support stateful (more-efficient due to prior knowledge) repea
calls of the search functions (in progress, not yet checked in as of this writing). See the Ju
and JudyL.h header files for details.

● TheJudy errnoandJudy error IDfields are used to pass error information up from a lower lev
on the way to returning them through a caller-supplied PJError_t object. Note: On 64-bit
systems the error ID might pack into the same word as misc + Judy errno because there
more bytes available per word; to be determined.

● Thevalue to return field only exists for JudyL. Similarly, it is a way of getting a value area
pointer back from a low level of recursion without passing a parameter separate from the

● Thetotal memory wordsfield is used to rapidly assess the overall memory efficiency of the t
(bytes/index) to support opportunistic branch decompression, and is also used to cross-c
the Judy1FreeArray() and JudyLFreeArray() functions. Note: This field is placed “late” in
structure in case of a machine with an 8-word cache line, because this field is not so “hot” a
others.

Additional fields used for statistics, etc. could exist (in the future) to the right of the fields sh
above but are not shown here.

Figure 15: Judy Population/Memory Node (JPM)

root pointer

to
ta

l p
o

p
u

la
tio

n

to
p

 J
P

m
is

c
+

 J
u

d
y

e
rr

n
o

Ju
d

y
e

rr
o

r
ID

(v
a

lu
e

 t
o

 r
e

tu
rn

)

la
st

 in
d

e
x

to
ta

l m
e

m
o

ry
 w

o
rd

s

la
st

 J
P

page 32 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

r
trated

ately
.
of the
 at

ch). A

and 7
r the

n it

stem.
E”
ach
nting
Note that theJAP Type field described earlier is different from theJPM (andJP) Type field
described in ‘‘JP Type Field’’ on page 40. However, the numericType values are disjoint and
could coexist.

4.5 Judy Branches

Below a JPM, a Judy tree consists of some combination of branch nodes (linear, bitmap, o
uncompressed), which are illustrated here, and leaf nodes (linear or bitmap), which are illus
starting at ‘‘Linear Leaves’’ on page 44.

Each branch is a literal (uncompressed) or virtual (linear or bitmap) array of 256Judy Pointers
(JPs). That is, node fanout is 256, and a Judy tree is a 256-way digital tree. Why 256? Ultim
it’s because computers access and handle bytes more efficiently than other-sized bit fields
Indexes are broken into digits that happen to also be bytes. This is reflected in the remainder
following diagrams. Also, even though a digital tree could have a variety of different fanouts
different levels or branch nodes, “there’s no profit in it” (as the Ferengi would say).

4.5.1 Linear Branches

A linear branch node is used when the actual fanout, that is, the number of populated
subexpanses, is relatively small, in practice, up to 7 JPs (out of 256 subexpanses per bran
linear branch, as illustrated in the next figure below, consists of three consecutive regions:

● count of populated subexpanses (JPs);

● sorted list of populated subexpanses (digits, each 1 byte);

● list of corresponding JPs (2 words each).

A maximum linear branch consisting of 7 JPs takes 1 byte for the number of subexpanses
bytes for the subexpanse list, hence 2 [1] words for the combination, followed by 14 words fo
JPs, fitting in 16 words = 1 cache line total. (In the current implementation, for speed and
simplicity of insertion and deletion, a linear branch is always allocated 16 words, even whe
contains only 1 JP and could fit in just 4 words.)

Here’s a picture of a Judy linear branch with 4 populated subexpanses (JPs) on a 32-bit sy
Each narrow rectangle all the way across the diagram represents 1 word of memory. The “
(subexpanse list) fields are single digits, in the sense of a digital tree digit (although here e
digit is a byte that takes two hexadecimal digits to represent), from the valid indexes represe
HP INTERNAL USE ONLY page 33

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

 this
 level
ther

essed
cy of
time.

nder) a
the populated subexpanses. Blank rectangles are memory (1 or more bytes) unused when
NumJP=4, which become used for larger NumJP = 5..7.

For example, it might be that E1 has the value 47 (hex), E2 = 9A, E3 = A5, and E4 = FD. In
case all of the indexes in this linear branch would have an Nth byte (where 5-N [9-N] is the
of the branch in the tree) that is either 47, 9A, A5, or FD; and there are no valid indexes with o
values in that byte.

Note that the Judy insert functions also opportunistically convert linear branches to uncompr
branches when either the population under a top-level branch, or the overall memory efficien
the tree in bytes per index for a lower-level branch, support doing so, in order to save access
020131: This is in flux and subject to revision.

4.5.2 Bitmap Branches

A bitmap branch node is used when the actual fanout of (that is, populated subexpanses u
branch node exceeds the capacity of a linear branch but substantial memory can be saved
compared to using an uncompressed branch.

Figure 16a: Example of Judy Linear Branch (32-bit)

JP for expanse 1 (E1)

JP for expanse 2 (E2)

JP for expanse 3 (E3)

NumJP=4 E1

E4

E3E2

JP for expanse 4 (E4)

JP

(one word across)

(two words)

(total 16 words)
page 34 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

ll
in

e first
ed

et in the
= 16

f the

)

for
-word
y

Note that the Judy insert functions also opportunistically convert bitmap branches to
uncompressed branches when either the population under a top-level branch, or the overa
memory efficiency of the tree in bytes per index for a lower-level branch, support doing so,
order to save access time. 020131: This is in flux and subject to revision.

A bitmap branch is a 2-tier object more complex than a linear or uncompressed branch. Th
level is the bitmap (always 256 bits = 32 bytes, on both 32-bit and 64-bit systems), subdivid
into 8 subexpanses, interspersed with 8 corresponding ordinary pointers to second-level JP
subarrays. Each JP subarray consists of a (packed) linear list of JPs, one JP for each bit s
bitmap. On a 32-bit system that’s 32/4 = 8 words for the bitmap and 8 words for the pointers
words = 1 cache line. [On a 64-bit system that’s 32/8 = 4 words for the bitmap and 8 words for the
pointers with 4 words (8 half-words) wasted = 1 cache line.] Any empty 32-bit subexpanse o
bitmap has a corresponding null pointer and empty subarray.

Why use a 2-tier object? Otherwise the JP array (which could grow to 256 JPs = 512 words
becomes too large for fast insertions and deletions.

020130: Previously the bitmap was contiguous and preceded the 8 pointers. This was fine
systems with 16-word cache lines, but resulted in as many as 3 cache fills on systems with 8
cache lines. Doug realized this could be avoided by interspersing the bitmaps and subarra
pointers, which is what is now illustrated below.
HP INTERNAL USE ONLY page 35

Judy IV
 D

ata S
tructures

Judy IV
 S

hop M
anual

A
ugust 5, 2002 8:27 pm

page 36
H

P
 IN

T
E

R
N

A
L U

S
E

 O
N

LY

H
ere’s

a
picture

ofa
32-bitJudy

bitm
ap

branch
containing

8
populated

subexpanses
(JP

s)
thatfall

in 2 32-bit subexpanses of the bitm
ap. E

ach narrow
 vertical rectangle represents 1 w

ord of
m

em
ory and each w

ider vertical rectangle is 2 w
ords.

F
igure 16b: E

xam
ple of 32-bit Judy B

itm
ap B

ranch

0

0

74

0

0

00

00

00

1F (null)

3F (null)

5F

7F (null)

9F

BF (null)

DF (null)

FF (null)

JP

JP for subexpanse 42

JP for subexpanse 45

JP for subexpanse 44

JP for subexpanse 46

JP for subexpanse 4C

JP for subexpanse 4D

JP for subexpanse 90

JP for subexpanse 4F

bitmap 00-1F = 0000000

bitmap 20-3F = 0000000

bitmap 40-5F = 0000B0

bitmap 60-7F = 0000000

bitmap 80-9F = 0001000

bitmap A0-BF = 000000

bitmap C0-DF = 000000

bitmap E0-FF = 000000

JP subarray pointer 00-

JP subarray pointer 20-

JP subarray pointer 40-

JP subarray pointer 60-

JP subarray pointer 80-

JP subarray pointer A0-

JP subarray pointer C0-

JP subarray pointer E0-

(1 word each)

(2 words each)

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

ws to
y if it
 the
y to be
ith null
sed

move
This

; see

stem,

ould

 for

ct (JP).
In this example, bitmap 40-5F = 0000B074, which looks like this in binary:

Note: Late in Judy IV development, we realized that once a bitmap branch JP subarray gro
the full amount of memory it can occupy, it would be faster to access and modify the subarra
were uncompressed. This means setting all of the bits in the corresponding subexpanse of
bitmap, even for subexpanses of indexes which are unpopulated; unpacking the JP subarra
a simple, positionally-accessed array; and representing unpopulated index subexpanses w
JPs. However, this is not yet implemented. Currently null JPs can only occur in uncompres
branches.

Note: In Figure 16b above, the bitmap and subarray pointer for 80-9F points to a subarray
containing a single JP. If this JP contained a single, immediate index, it would be possible to
the JP from the subarray into the bitmap branch itself, replacing the bitmap + pointer words.
has been considered but not yet implemented.

Note: The aspect ratio, currently 8 subexpanses of 32 JPs each, is macroized into the code
BITMAP_BRANCH* and BITMAP_LEAF*, also NO_BRANCHU. Using an aspect ratio with
fewer bits per bitmap than bits per word, such as 16 on a 32-bit system or 32 on a 64-bit sy
opens the possibility of inserting a subexpanse population count into each bitmap word in a
bitmap branch, at least for smaller populations, thereby speeding up counting because it w
require fewer cache fills.

4.5.3 Uncompressed Branches

A Judy uncompressed branch is merely an array of JPs, in this case 256 JPs, with null JPs
empty subexpanses. At 2 words per JP, that takes 512 words or 2Kb [4Kb].

Here’s a picture of a Judy uncompressed branch. Each rectangle represents a 2-word obje

Figure 16c: Example of Judy Bitmap Branch Subexpanse

5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 455
F E D C B 8 7 6 5 4 3 2 1 09A F E D C B 8 7 6 5 4 3 2 1 09A

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 000

0 40 0 0 B 0 7

Figure 16d: Judy Uncompressed Branch

...JP 0 JP 1 JP 254 JP 255

JP
HP INTERNAL USE ONLY page 37

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

al or

f that

here

age

. This
ugh

rtical

at

age

 3 bits
y, to
mark
4.6 Judy Pointer (JP)

Each JP occupies 2 words = 8 bytes [16 bytes]; that is, the digital tree’s branches are (liter
virtual) arrays of 2-word objects.

Each JP identifies the type of object to which it points, and can also “narrow the expanse” o
object while doing so (see ‘‘Decode and Population Fields’’ on page 39).

You might wonder why a JP is always 2 words in size, even at lower levels of a Judy tree w
you might think you wouldn’t need that many bytes, when thePopulation field (see below) gets
smaller, especially when no narrow pointers (also see ‘‘Decode and Population Fields’’ on p
39) are involved. It turned out to be simpler and more CPU-efficient to use a fixed-size “rich
pointer” (JP), even at the cost of some “wasted space” especially at lower levels in the tree
extra space turns out to be useful for corruption detection in that it can hold meaningful, tho
redundant, data.

4.6.1 Basic JP Data Structure

The basic JP data structure is 2 32-bit [64-bit] words structured as follows. Each narrow ve
rectangle represents 1 word.

For a null JP all bytes except theType field are zero. Otherwise the first word is a pointer to (th
is, address of) a subsidiary branch or leaf node. TheDecode (decoded index) andPopulation
fields together fill all but 1 byte of the second word; see ‘‘Decode and Population Fields’’ on p
39.

Note: Since a JP’s pointer field always points to an object at least 2 words in size, the least
of the pointer [or more on 64-bit systems] are always zero, but we found no need, ultimatel
pack any information into that space. Perhaps in a future implementation, we will, such as to
a relative rather than absolute address.

po
in

te
r

32 [64] address bits

JP Type = 1 byteT

D

P

Decode = 0..2 [0..6] bytes

Population - 1 = 1..3 [1..7] bytes

Figure 17a: Judy Pointer (JP), Null or Pointing to Branch or Leaf Node
page 38 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

.
, also
e 41.

n
e

s
.)

ex is

se.

ost 4 -

at is,
).

h in
When a JP is used to hold “immediate indexes” instead of pointing to some other node, it
generally looks like this instead:

Note the presence of aJP Type field of the same size and in the same place as in any other JP
However, the remaining bytes of the JP are used to hold immediate indexes, and for JudyL
either a value area or a pointer to a “value areas leaf”. See ‘‘Immediate Indexes JP’’ on pag

Note: Thetop JP field in a JPM always contains a valid pointer (to a top branch node) and a
appropriateJP Typefield, but theDecodeandPopulationfields are null and unused. No bytes ar
decoded above the top level, and thePopulation field is too small to hold the entire array
population, which is why it’s a separate field in the JPM. Also note that thetop JPcannot contain
a narrow pointer, that is, it always points to a top-level branch.

4.6.2 Decode and Population Fields

TheDecode andPopulation fields share a common data field (1 word less 1 byte). (Note: Thi
design depends on the fact that Judy1 and JudyL support fixed-size indexes of size 1 word

A normal JP always resides in a branch, below a JPM, so at least 1 digit (1 byte) of any ind
already decoded in the course of accessing the JP. Hence there can be at most4 - 1 = 3 [8 - 1 = 7]
index bytes left to decode, and 2^24 [2^56] valid indexes (population) in the JP’s subexpan

Under any JP, at least 1 more digit (1 more byte) is always decoded at the leaf level, so at m
1 - 1 = 2 [8 - 1 - 1 = 6] nextleading bytes could becommonbetween all of the valid indexes in the
JP’s subexpanse. The common bytes themselves must be stored in theDecode field, and the JP
can be thought of as a “narrow-expanse pointer”.

In practice it’s more efficient to always store in theDecodefield all the bytes (except the first one)
decoded so far, not just the common bytes needed for a narrow pointer when applicable (th
when the child node is more than one level below the parent branch node containing the JP
When a JP is not narrow, thePopulation field’s size is equal to the level of the subsidiary node
under the pointer (counting up from the bottom of the tree), exactly 1 level below the branc
which the JP resides. When the JP is narrow, theDecode field is accordingly larger and the
Population field is smaller, again matching the level of the subsidiary node (2 or more levels

JP Type = 1 byteT

Figure 17b: Judy Pointer (JP) Containing Immediate Indexes

.

I
I

.

HP INTERNAL USE ONLY page 39

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

so it

256-

es:

le
is that

s, the
dyL.h

any

 pointer

tate
udy
all
rt an
at
below the branch containing the JP). Note that thePopulation field is always at least 1 byte, even
in a level-2 branch’s JPs (which point to level-1 leaves).

Saying it differently, the boundary between theDecode andPopulation fields “floats”. Lower in
the tree theDecode field is larger and thePopulation field is smaller. Note how 3 [7] bytes are
always sufficient to hold both theDecode bytes and thePopulation bytes -- in a normal JP. The
top JPin the JPM doesn’t decode 1 byte “off the top” and it cannot support a narrow pointer,
has noDecodebytes, and thePopulationfield takes a full word (separate from thetop JP). As the
number of common leading bytes increases, the subexpanse and the possible remaining
population, hence the size of thePopulation field, decrease at the same rate.

Note: Common bit compression is done in units of bytes because this is the digit size for a
way digital tree.

4.6.3 JP Type Field

A JP can point or otherwise refer to only one of five broad classes (types) of subsidiary nod

● null (empty subexpanse)
● branch (linear, bitmap, or uncompressed)
● leaf (linear or bitmap)
● immediate indexes
● full population (Judy1 only)

However, the actual list of JP types is quite long (too long to put in a table here), and variab
between Judy1 and JudyL, and also between 32-bit and 64-bit implementations. The reason
theJP Type field is large enough (1 byte = 8 bits = 256 values) to enumerate every possible
subsidiary node type, including the level at which the node resides, or for immediate indexe
bytes per index (that is, its level) and the number of indexes present. See the Judy1.h and Ju
header files for the enumerations of the JP types.

We are aware that the use of a wide variety of node types is “academically impure” (in that m
academic papers frown on pointers pointing to varieties of child node types), but it seems
necessary for adaptability and performance, and the C language supports clean casting of
types.

Using a single large enumeration in a singleJP Typefield, rather than a collection of disjoint data
fields, means the code that traverses or modifies a Judy tree can be written as astate machine
whose inputs are the index being processed plus the nodes of the tree. The hallmark of a s
machine is iteration or recursion through one large switch (or case) statement. In fact the J
code for each API function largely consists of a single large switch statement with many sm
code chunks (cases) that are very specific to the operation being performed, such as, “inse
index in an immediate index JP already containing 2 indexes of 2 bytes each.” Variations th
might be computed at run-time are instead precomputed at compile time for efficiency.
page 40 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

p
r than
nch JP

k size
o be
leaves.

. The
map

 but
an

id
diate
s reside
ounts
For all but null and immediate JPs, before traversing through the JP’s pointer field to the
subsidiary node, the parent JP can decode some index bytes by use of theDecode field, thereby
narrowing the expanse of the branch, leaf, or full expanse to which the JP points.

4.6.3.1 Null JP

Currentlynull JPs are only valid in uncompressed branches. The JP lists in linear and bitma
branches are “packed” rather than positional, that is, empty subexpanses are absent rathe
being represented by null JPs. Note: We have an idea to create “uncompressed bitmap bra
subarrays” for faster performance at no memory cost, which would change this.

4.6.3.2 Branch JP

A branch JP always lives in a JPM’stop JP field or in a branch, and points to an (or another)
branch node.

4.6.3.3 Leaf JP

A leaf JP always lives in a branch and points to a non-root-level linear or bitmap leaf node.

4.6.3.3.1 Bitmap Leaf JP

A bitmap leaf JP is used to reference a level-1 leaf containing, for Judy1 >= 25 [16] 1-byte
indexes, or for JudyL >= 26 1-byte indexes. For Judy1, at this population the memory chun
goes from 6 words to 8 words [2 words to 4 words] = 32 bytes = 256 bits. A bitmap turns out t
faster for set and test operations than a linear leaf, as well as cheaper in memory, for larger

For 32-bit JudyL, 26 indexes is the point where the leaf would grow from 2 to 3 cache lines
same transition population is used for 64-bit JudyL in lieu of a better answer. The JudyL bit
leaf structure is 2-tier (see ‘‘Bitmap Leaves’’ on page 47) and its layout depends on the
distribution of the indexes, so a “correct” transition population is not a simple static number
would depend on the indexes stored, but it’s not worth computing it in real time. -- As you c
see, there are many subtle issues in the Judy design.“People who deal with bits should expect to
get bitten.” -- Jon Bentley

4.6.3.4 Immediate Indexes JP

An immediate indexes JPessentially includes a small (“shortcut multi-index”) leaf, but to avo
confusion we refer to it as an “immediate JP” or “immediate indexes” rather than an “imme
leaf”. Immediate JPs are used to represent sparsely populated expanses where the indexe
in the JP itself, in one of the following combinations of index counts (populations). These c
HP INTERNAL USE ONLY page 41

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

, or 1

the
in the

e
dex --
much

l once

r 64-

e

evel
are just the numbers of N-byte indexes that can be packed into 2 words less 1 byte for Judy1
word less 1 byte for JudyL. (Don’t panic, drawings follow...)

Immediate indexes are packed into immediate JPs starting at the “first byte” (farthest from
Type field), possibly leaving some unused bytes. However, in some cases the “first byte” is
first word of the JP and in other cases it’s in the second word:

● For Judy1, there are no value areas associated with indexes, so all but 1 byte (theType field) of
each JP is available to hold index bytes, and the “first byte” is in the first word.

● For JudyL, however, the first word of the JP is either the value area for a single index or a
pointer to a “values only leaf” for multiple immediate indexes, and the “first byte” is in the
second word.

● Furthermore, when an immediate JP contains only a single index, no matter the index siz
(remaining undecoded bytes), there’s always space to store all but the first byte of that in
in the second word. It turns out that this odd encoding makes index insertion and deletion
simpler, so it’s used for both Judy1 and JudyL.

Note: The structure of a linear leaf and the indexes portion of an immediate JP are identica
the starting address, index size, and population are known.

Following are some examples. In each case:

● The drawing (next figure below) is “scaled” for 32-bit, but extends as you would expect fo
bit.

● “I” represents the N least significant bytes of an index; if more than one index is stored, th
indexes appear in sorted order.

• Note: For a solitary index, all but the first byte of the index is stored, regardless of the l
in the tree.

Table 5: Populations of Immediate JPs

Judy1 JudyL

32-bit [64-bit] 32-bit [64-bit] Index Size

[1..2] [1] [7-byte indexes]

[1..2] [1] [6-byte indexes]

[1..3] [1] [5-byte indexes]

[1..3] [1] [4-byte indexes]

1..2 [1..5] 1 [1..2] 3-byte indexes

1..3 [1..7] 1 [1..3] 2-byte indexes

1..7 [1..15] 1..3 [1..7] 1-byte indexes
page 42 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

iate
rictly

e index
ut

nused

gether,
-byte
y a
• Note: The current Judy IV implementation enumerates null and solitary-index immed
JPs by level, but since the JP format is identical for all single-index JPs this is not st
required, merely handy when converting to/from multiple immediate indexes.

● TheJP Type field (“T”) occupies 1 byte and encodes (enumerates) the fact that this is an
immediate JP, how many indexes are present, and how many bytes are in each index (th
size). Presently we encode the index size even for solitary indexes, as noted previously, b
we’ve realized that is an unnecessary complexity, and we might do away with it.

● Narrow vertical rectangles represent 1 word, and empty (unlabeled) rectangles represent u
bytes.

“The difficult we do immediately; the impossible takes a little longer.”

020130: Reader feedback: “...for the Judy1 case where there are many indices clustered to
you might use a variant of the ‘expanse spans’ I mentioned above. Instead of listing each 1
index, you might be able to list ‘index/bitmap’ pairs. These would be a 1-byte index followed b

Figure 18: Examples of 32-bit Immediate JPs

Judy1, 1 index:
Judy1, 2 indexes,

1 byte each:
Judy1, 7 indexes,

1 byte each:
Judy1, 2 indexes,

2 bytes each:

Judy1, 2 indexes,
3 bytes each: JudyL, 1 index:

JudyL, 2 indexes,
1 byte each:

I

T T T T

T T T

I1

I2

I1

I2

I3

I4

I5

I6

I7

I1

I2

I1

I2a

I2bc

Va
lu

e1I

P
oi

nt
er

I1

I2
Va

lu
e2

Va
lu

e

(values-only leaf)
HP INTERNAL USE ONLY page 43

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

iate

a net

eld is
 of

iate

to
nch
used

x

rder)
elow
lue
 index

es
 for a
1-byte bitmap of the 8 indices starting at that location. These might allow you to use immed
JPs more often...”

-- Right, but again, it’s a CPU versus space tradeoff to do any further compression. Earlier
versions of Judydid have more complex encoding schemes... And we gave them up as being
loss.

4.6.3.5 Full Expanse JP

A full expanse JP (also referred to as just a “full JP”) represents a subexpanse with a full
population, that is, where all of the indexes in the subexpanse are valid. The JP’s pointer fi
null. TheDecode andPopulation fields are employed as usual to specify the location and size
the full expanse. Note that a full expanse can effectively reside under a narrow pointer. For
example, a 32-bit Judy1 top-level linear branch might contain 2 JPs, one containing immed
indexes and the other a full JP with 2Decode bytes and 1Population byte with the value 0xff (=
256 - 1).

Full JPs only save significant memory at the lowest level of the tree (where there is 1 byte
decode), so they are only used at that level, although they can appear in a higher-level bra
under a narrow pointer. Also, they only save significant memory for Judy1, so they are not
with JudyL.

4.7 Linear Leaves

In principle a digital tree ends in single-index leaves. In practice Judy arrays use multi-inde
leaves to save time and space.

A Judy1 linear leaf is simply a packed array of indexes that for each index stores (in sorted o
only the minimum number of bytes remaining to be decoded at the leaf’s level in the tree (b
the root level), similar to immediate indexes described above. A JudyL linear leaf adds a va
area (1 word) for each index, in a separate, corresponding list at a higher address than the
list.

Linear leaves have noPopulation(index count) field, unlike a root-level leaf. The parent JP carri
the population for the leaf, unlike a root-level leaf where there’s no room in the root pointer
Population field and it must be stored in the leaf itself.

A linear leaf contains one of the following populations of indexes.

Table 6: Populations of Linear Leaves

Judy1 JudyL

32-bit [64-bit] 32-bit [64-bit] Index Size
page 44 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

dy1
s the
node
or 1-

map
and
.]

d and
rds in

t could
Notes:

● In each case the leaf’sindex size, that is, the number of remaining undecoded bytes in each
index, is enumerated in theJP Type field as described earlier.

● Theminimum leaf populations are based on how many indexes animmediate JP can hold.
That is, smaller populations are immediatized (see ‘‘Immediate Indexes JP’’ on page 41).

● Themaximum leaf populations are based on the capacity of 2 cache lines (32 words) for Ju
linear leaves or 4 cache lines (64 words) for JudyL linear leaves. The maximum number i
point after which either a lower-level leaf under a narrow(er) pointer is used, a new branch
is inserted (for 2-byte and larger indexes), or the linear leaf is replaced by a bitmap leaf (f
byte indexes)

[Note: The 64-bit Judy1 implementation switches directly from immediate indexes to a bit
leaf upon reaching 16 indexes, to avoid creating a linear leaf for a single population size
then a bitmap leaf upon the next insertion, reaching 17 indexes, in the same subexpanse

Here are examples of some linear leaves. Each narrow vertical rectangle represents 1 wor
empty rectangles represent unused bytes. Note that nearly every linear leaf is at least 4 wo
size because the next smallest allocatable memory chunk is 2 words, and any linear leaf tha

[3..36] [2..34] [7-byte indexes]

[3..42] [2..36] [6-byte indexes]

[4..51] [2..39] [5-byte indexes]

[4..64] [2..42] [4-byte indexes]

3..42 [6..85] 2..36 [3..46] 3-byte indexes

4..64 [8..128] 2..42 [4..51] 2-byte indexes

8..24 (see below) 4..25 [8..25] 1-byte indexes

Table 6: Populations of Linear Leaves
HP INTERNAL USE ONLY page 45

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

he

word.
ertions
 least
dyL
fit in 2 words (less 1 byte for theJP Typefield) would instead be stored as immediate indexes. T
single exception is 8 1-byte indexes, as shown below.

JudyL requires a value area corresponding to each stored index. Each value area requires 1
Values areas begin at an aligned location at a higher address than the index list so most ins
or deletions occur “in place” with minimum bytes moved. JudyL linear leaves are always at
4 words in size, but the boundary with immediate indexes is a bit trickier than for Judy1. Ju

Figure 19a: Examples of 32-bit Judy1 Linear Leaves

8 indexes,
1 byte each:

5 indexes,
2 bytes each:

I1

I2

I3

I4

I5

I6

I7

4 indexes,
3 bytes each:

I1

I2a

I2bc

I3ab

I3c

I4

I1

I2

I3

I4

I5

I8

9 indexes,
1 byte each:

I1

I2

I3

I4

I5

I6

I7

I8

I9

JP JP

JP JP

(o
ne

 w
or

d
ta

ll)
(o

ne
 w

or
d

ta
ll)
page 46 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

e

hen
 a
 an
m the

map.]

udyL
e area
immediate indexes are used when the index bytes fit in 1 word (not 2 words) less 1 byte for thJP
Type; otherwise a linear leaf is used.

4.8 Bitmap Leaves

At the lowest level of the tree, where there is only a single index digit (byte) left to decode, w
a 256-index subexpanse has sufficient population, it saves memory to represent the leaf as
bitmap with 1 bit for each index in the subexpanse, hence 256 total bits or 32 bytes. Here’s
example of a bitmap leaf where each vertical rectangle represents 1 word. [On a 64-bit syste
leaf looks similar except the words are bigger and there are half as many of them in the bit

JudyL requires a value area (1 word) corresponding to each index. Like a bitmap branch, a J
bitmap leaf is a 2-tier object, except the JP subarrays (2 words per element) are instead valu

Figure 19b: Examples of 32-bit JudyL Linear Leaves

7 indexes,
1 byte each:

2 indexes,
2 bytes each:

2 indexes,
3 bytes each:

I1

I2

I3

I4

I5

I6

I7

I1

I2

I1

I2a

I2bc

Va
lu

e1

Va
lu

e2

Va
lu

e2

Va
lu

e1

Va
lu

e1

Va
lu

e7

...

JP JP JP

(o
ne

 w
or

d
ta

ll)

(e
m

pt
y,

 u
nu

se
d)

Figure 20a: Example of 32-bit Judy1 Bitmap Leaf

bi
tm

ap
 0

0-
1F

 =
 0

00
A

90
01

bi
tm

ap
 2

0-
3F

 =
 0

00
00

00
0

bi
tm

ap
 4

0-
5F

 =
 0

C
05

1A
30

bi
tm

ap
 6

0-
7F

 =
 0

00
00

00
0

bi
tm

ap
 8

0-
9F

 =
 0

00
8E

00
0

bi
tm

ap
 A

0-
B

F
 =

 0
00

00
00

0

bi
tm

ap
 C

0-
D

F
 =

 0
F

F
07

00
0

bi
tm

ap
 E

0-
F

F
 =

 0
A

C
00

00
0

JP

(o
ne

 w
or

d
ta

ll)
HP INTERNAL USE ONLY page 47

Judy IV Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

the

lid
shown

es and
lation/

nodes
es of
subarrays (1 word per element). [On a 64-bit system the bitmap takes 4 words, there are 4
subarray pointers, and the remaining words are unused.]

020130: As described in ‘‘Bitmap Branches’’ on page 34, previously the bitmap words and
subarray pointers were not interspersed.

Note: The preceding example is slightly misleading because for this small number (8) of va
indexes and associated values a linear leaf would be used instead. Imagine the bitmap leaf
above but with more bits set and more corresponding value areas.

4.9 Symmetries

Note the degree of symmetry between branches and leaves, that is, between linear branch
linear leaves, and also between bitmap branches and bitmap leaves. (See also ‘‘Judy Popu
Expanse Organization and Growth’’ on page 23.) This symmetry is most apparent in the
implementation (JudyL) wherein each index is mapped to an associated value. The interior
of the tree map portions (digits) of indexes to pointers to subsidiary nodes. The terminal nod

va
lu

e
fo

r
in

de
x

45

va
lu

e
fo

r
in

de
x

44

va
lu

e
fo

r
in

de
x

46

va
lu

e
fo

r
in

de
x

4C

va
lu

e
fo

r
in

de
x

4D

va
lu

e
fo

r
in

de
x

90

va
lu

e
fo

r
in

de
x

4F

bi
tm

ap
 0

0-
1F

 =
 0

00
00

00
0

bi
tm

ap
 2

0-
3F

 =
 0

00
00

00
0

bi
tm

ap
 4

0-
5F

 =
 0

00
0B

07
4

bi
tm

ap
 6

0-
7F

 =
 0

00
00

00
0

bi
tm

ap
 8

0-
9F

 =
 0

00
10

00
0

bi
tm

ap
 A

0-
B

F
 =

 0
00

00
00

0

bi
tm

ap
 C

0-
D

F
 =

 0
00

00
00

0

bi
tm

ap
 E

0-
F

F
 =

 0
00

00
00

0

va
lu

e
su

ba
rr

ay
 p

oi
nt

er
 0

0-
1F

 (
nu

ll)

va
lu

e
su

ba
rr

ay
 p

oi
nt

er
 2

0-
3F

 (
nu

ll)

va
lu

e
su

ba
rr

ay
 p

oi
nt

er
 4

0-
5F

va
lu

e
su

ba
rr

ay
 p

oi
nt

er
 6

0-
7F

 (
nu

ll)

va
lu

e
su

ba
rr

ay
 p

oi
nt

er
 8

0-
9F

va
lu

e
su

ba
rr

ay
 p

oi
nt

er
 A

0-
B

F
 (

nu
ll)

va
lu

e
su

ba
rr

ay
 p

oi
nt

er
 C

0-
D

F
 (

nu
ll)

va
lu

e
su

ba
rr

ay
 p

oi
nt

er
 E

0-
F

F
 (

nu
ll)

Figure 20b: Example of 32-bit JudyL Bitmap Leaf

va
lu

e
fo

r
in

de
x

42
JP

(o
ne

 w
or

d
ta

ll)

(o
ne

 w
or

d
ta

ll)

(u
nu

se
d)

(u
nu

se
d)
page 48 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Judy IV Data Structures

sses of,

hen

pecific

 save
t only
 in
 open
the tree map fully decoded indexes to value areas that, in practice, often contain the addre
that is, pointers to, caller-defined objects external to the tree.

However, this symmetry fails in that there is no leaf equivalent to an uncompressed branch. W
a higher-level leaf exceeds a specific population, it is converted to a lower-level leaf under a
narrow(er) pointer or to a subtree under a new branch. When a lowest-level leaf exceeds a s
population, it is converted to a bitmap leaf.

You might ask, if it makes sense to convert a bitmap branch to an uncompressed branch to
one cache fill, why not a JudyL bitmap leaf to a large, uncompressed linear leaf? (Note tha
JudyL has 2-tier bitmap leaves.) We think this would add complexity without a great benefit
performance compared with more-frequent tree traversals at higher levels. However, it’s an
question when you consider building meta-tries using JudyL as the branch nodes.
HP INTERNAL USE ONLY page 49

Usage of Data Structures Judy IV Shop Manual August 5, 2002 8:27 pm

’ on

.

y

 is
-byte
ll

exes
se of
es

cks if
wer-
af is

reater
e 44.

 2
w(er)
be
anch.
ither

hecks
ear
 new
JPs.

sult
5. Usage of Data Structures

Here’s a summary of how the data structures previously described are employed. See also
‘‘Examples of Judy Trees’’ on page 67.

● An empty Judy array is represented by a null root pointer. See ‘‘Judy Array Pointer (JAP)’
page 28.

● Upon insertion of the first 1..31 indexes, the root pointer points to a root-level leaf, which
requires 2, 4, 6, 8, 12, 16, 24, or 32 words = one memory chunk from the Judy memory
manager, depending on population. This leaf begins with aPopulation word (except for
population = 2, and for JudyL only, population = 1). See ‘‘Root-Level Leaves’’ on page 29

● When a Judy array contains >= 32 indexes, the root pointer points to a JPM, which in turn
points to a top-level branch. Note that a JPM’stop JPis never null, it never contains immediate
indexes because it is only used when a root-level leaf overflows, and (by design) it never
contains a narrow pointer or points directly to a leaf, either. See ‘‘Judy Population/Memor
Node (JPM)’’ on page 31

● When possible indexes are stored in immediate JPs. When an immediate JP overflows it
converted to a leaf JP (see ‘‘Leaf JP’’ on page 41), and later perhaps to a bitmap JP (for 1
indexes only) or, for Judy1 only, to a full JP if the population grows large enough (see ‘‘Fu
Expanse JP’’ on page 44).

● The tree is kept in “least compressed form” in the leaves. For example, even if 32 3-byte ind
in a level-3 leaf have 1 or 2 leading bytes in common, no compression is done. The purpo
compression is to avoid multi-level cascades that would result in 2 or more (linear) branch
each with a fanout of 1, that is, containing only a single non-null JP.

● When an index is inserted into a full leaf node, that is, one that is at capacity, the code che
it is possible to do leaf compression and put the new index plus all present indexes in a lo
level leaf under a narrow pointer -- or a narrower pointer than the current one, if the full le
already under a narrow pointer. This is possible if the indexes are all in the same narrow
subexpanse, that is, they have N digits in common under the parent branch, where N is g
than the parent branch’s level minus the full leaf’s level. See also ‘‘Linear Leaves’’ on pag

● As the Judy digital tree grows and a linear leaf with 2..4-byte [2..8-byte] indexes exceeds
cache lines (4 for JudyL), and if it cannot be converted to a lower-level leaf under a narro
pointer, initially a branch replaces it. (A 1-byte-index leaf cannot overflow because it can
represented as a bitmap.) Typically, but not necessarily, the inserted branch is a linear br
But with sufficiently random indexes in the leaf, a bitmap branch might be necessary. In e
case the branch node could be opportunistically created as an uncompressed branch.

● When an index is inserted into any branch or leaf node under a narrow pointer, the code c
if it is an “outlier”, that is, it falls outside the expanse of the narrow pointer. If so, a new lin
branch is inserted between the parent branch and the node under the narrow pointer. The
outlier index becomes an immediate index in the new linear branch, which has a fanout of 2
Note that a multi-level narrow pointer can have a new branch inserted “within it” and still re
page 50 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Usage of Data Structures

it
ow

mory,

sert
ng the
d
ode
rough a
er the

il it is
n the

shing”
r all
the
sus a
in 1 or 2 narrow pointers above and/or below the new branch. (In practice, only on a 64-b
system; there aren’t enough levels on a 32-bit system to support a 3-level or greater narr
pointer.) Here’s an illustration.

Note the “locality” of this operation. The old parent JP is copied into the new linear leaf
unaltered and the linear leaf is unaltered. Most Judy insert/delete operations are similarly
localized, hence faster.

● To minimize worst-case insert/delete time,hysteresis can be used. This means, for example,
upon deleting an index, sometimes leaving a branch even when a leaf would use less me
leaving a bitmap even when a 1-byte linear leaf would use less memory, etc.

● Finally, there’s an interesting asymmetry between the insert and delete code. First, the in
code pre-grows the tree when necessary and then inserts the new index. Note that growi
tree is not always necessary. Sometimes the memory chunk already allocated has unuse
padding in it that allows a “grow-in-place” insertion. When this is not possible, the insert c
rebuilds data structures as needed, thereby ensuring memory can be allocated, passing th
temporary state in which a branch or leaf has a lower-than-intended population, whereaft
new index is inserted now that there’s room for it.

In contrast, the delete code uses hysteresis when possible to delay shrinking the tree unt
sure to fit in the next smaller sized object(s). A branch or leaf is only shrunk or deleted whe
existing structure is already low-population enough to use a smaller or simpler structure,before
the index is deleted. This makes for simpler delete code and in some cases prevents “thra
when a series of interleaved insertions and deletions occurs. Hysteresis is not possible fo
data structures. In some cases the structure must exactly match the population because
population itself is the key to the choice of data structure, such as immediate indexes ver
leaf. Also, hysteresis greater than 1 is never used; at most, there is a one-index delay.

Figure 21: Example of Inserting an Outlier

Before After

JP

narrow pointer
skips 4 levels

level 6

level 1 linear leaf

JP

linear branch, 2 JPslevel 4

level 5

level 2

level 3

narrow pointer skips 1 level

linear leaf

narrow pointer skips 2 levels

(1 immediate JP contains outlier)
HP INTERNAL USE ONLY page 51

Machine Dependencies Judy IV Shop Manual August 5, 2002 8:27 pm

ere the
s the

PA-
ons.
larger
32-bit

rnal

n
e at

r, we
ith 8-
ink)

n or
de the
e

r
, 24,
 Judy
r

nks

the
en
cases

le
s been
6. Machine Dependencies

Judy is designed to be as fast, small, and portable as possible on “modern processors” wh
CPU cycle time is small compared to the memory (RAM) access time. However, its design ha
following machine attribute dependencies.

● Word size: Judy is designed for modern processors with 32-bit or 64-bit words. For HP-UX
RISC and IPF we build 32-bit and 64-bit versions, including PA 2.0 32-bit and 64-bit versi
Naturally a larger word size means somewhat slower execution, but also an enormously
expanse for each tree, consequently with much more frequent use of narrow pointers. The
version runs fine on a 64-bit PA-RISC system, but can only be linked with a 32-bit main
program. We expect the main program’s choice of word width to be based on various exte
requirements, and then the appropriate version of Judy used to match.

● Cache line size: Judy is designed for modern processors with 16-word cache lines. (Size i
bytesvaries between 32-bit and 64-bit systems.) It’s difficult to determine the cache line siz
run-time, and for efficiency the software must be compiled for a fixed size anyway. Howeve
expect Judy’s speed to degrade (or underperform the optimum) only a little on systems w
word, 32-word, or 64-word cache lines. In fact IA32 has an 8-word cache line size, and (I th
PA-RISC 64-bit systems also have 8-word cache lines. Dunno about IPF.

● Endianness: Judy is designed to operate equally well whether the architecture is little-endia
big-endian. Data is accessed through C structures in such a way (“endian-neutral”) as to hi
differences. However, leaf search routines for odd-byte-sized indexes might be faster if th
machine’s endianness were known, that is, ifdef’d into the code.

● Memory manager: Judy contains its own memory manager that obtains large chunks of
memory from the system and parcels it out in smaller units. To keep the memory manage
simple and efficient, chunks are only available in the following word sizes: 2, 4, 6, 8, 12, 16
32, 48, 64, 96, 128, 192, 256, 384, and 512. These are each 2^N*3/4 or 2^N. The largest
object needed is a 256-way branch, 256 * 2 = 512 words. (Note: Even JudyL has no large
objects.)

-- Caveat: Prior to 11i OEUR, the memory manager was modified to allocate smaller chu
and use straight malloc(3X) for larger chunks.

While the memory manager is not directly a machine dependency, it intimately relates to
Judy design, such as in the handling of 2-index root-level leaves; the tradeoff point betwe
linear and bitmap leaves; and a greater use of pointers to small objects rather than in some
using larger, contiguous objects and fewer pointers. The last would require a more capab
memory manager, better at coalescing odd-sized free blocks. Such a memory manager ha
written, but as of September 2001 it has not yet been installed in Judy.
page 52 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

s this

t for

void
l than

r it

find

C, so
ct is a

ument
7. Working on Judy

Welcome to the Judy team! Thegood news is that Judy is an exciting state-of-the-art core
technology with a lot of unexpected, synergistic applications, we’ve already built the basic
product for you and gotten most of the bugs out, and we’ve written some documents, such a
one, for better or worse. Thebad news is that like most software products Judy is large and
complex, hence imperfect, and it comes with a fuzzy cloud of issues, tasks, and possible
enhancements ranging from the urgent to the impractical. But I’m sure that you can fix all tha
us old geezers...

“If youth but knew, if old age but could.” -- Henri Estienne

The purpose of this section is to give you anoverview of the tools and processes used to
implement, build, debug, and deliver Judy. However, this is not a complete description, to a
redundancy with more specific documents about each topic. Consider this more of a tutoria
a reference, and forgive me if any of it is incomplete (even in concert with other material) o
gets out of date.

7.1 Source, Intermediate, and Delivered Files

Excuse the author for getting on the soapbox to preach a short bit of theory that you might
helpful in deciphering the Judy source tree and build process.

In the classical sense a source file is something you feed a compiler. Judy is written in ANSI
our source files are named *.h or *.c. In the more general sense, a build of a software produ
data flow, which can be represented as a data flow diagram (DFD). In a DFD there are
repositories, usually files, and processes that transform data, such as a compiler. This doc
HP INTERNAL USE ONLY page 53

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

g

te
utput

urce

a

n
uch
for

y of
refers to as “source files” any files which appear in a build DFD with no input arrows, meanin
they simply pre-exist in the build context.

Furthermore, any file with an arrow coming into it from one or more processes is aconstructed
file. There are two types of constructed files:

1. Intermediate files, which are not delivered to customers, and

2. Delivered files, which are shipped by some means.

In a “healthy” build-DFD, all source files have at least one arrow out of them; all intermedia
files have both input and output arrows; and delivered files have at least input arrows, with o
arrows possible but not required.

Note well that in a DFD a process step can be as simple as a “cp” (copy). That is, some so
files, such as manual entries, are deliverable without further processing, but (and this is
important), they are still copied to the delivery tree. (See below about source purity, and in
‘‘Makefile Concepts’’ on page 56 about the deliver/ tree.) For a bigger “real life” example of
DFD, see ‘‘Judy Build and Delivery Key Control and Data Flows’’ on page 79.

What does this have to do with Judy?Our private source files are maintained in a /judy/ tree o
a SoftCM server (history manager) {prior to LGPL}. Other source files for our build process, s
as system header files and libraries, are part of a build environment. We build Judy nightly
deliveries using the Common Process Framework (CPF), which includes:

● anupdate.be step that constructs a chroot-able augmented build environment (ABE);

● acheckoutstep that prepares all the private source files in a private “sandbox” that is a cop
the master source tree for a particular revision (tag or symbolic name, such as “J4”);

● abuild step that invokesmake(1) on the Judy makefile;

Figure 22: Example Build DFD

header.h source.c

cc

source.o

ld

exec

(source files)

(delivered file)

(intermediate file)

(compile)

(link)
page 54 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

 under
E.

elf.
ps not
ity

ed as

r is

s for
● apackage step that constructs SD depots; and

● a runtests step that runs automated regression tests on the constructed deliverable files.

See also ‘‘Judy Build and Delivery Key Control and Data Flows’’ on page 79.

Delivery is semi-automated but lives outside the CPF (at least at this time). See ‘‘Delivering
Judy’’ on page 66.

Furthermore, the Judy product is “BE-pure” in that it does not modify the build environment
when it runs (a very bad practice). In particular this means that constructed files are placed
the source tree and not in their delivered locations on the host system or in the chrooted B

Also the Judy product is as “source-pure” as it can be, which means all constructed files are
placed in constructed subsidiary directories and otherwise do not pollute the source tree its
This allows multiple platforms, flavors, etc. to be built in the same source tree, albeit perha
simultaneously due to, for example, compiler temporary files. The exceptions to source pur
have to do with tool files that must be modified in-place for packaging (see judy/tool/psf).

More is said in ‘‘Makefile Concepts’’ on page 56 about the source tree and constructed files
layout.

7.2 History Manager (SoftCM)

The Judy private files source tree resides {resided} in /judy/ on a SoftCM server... {rest delet
irrelevant}.

7.2.1 Convenient Shortcuts

Learn to use $PATH and $CDPATH in your shell; see the manual entry for details. The latte
very handy for popping back and forth between, say, judy/test/manual and judy/src via “cd
manual” and “cd src”.

I also find it useful to declare the following (incomplete) set of shell environment parameter
working on the Judy code...

export hp=’JudyCommon/JudyPrivate.h’
export hb=’JudyCommon/JudyPrivateBranch.h’
export ht=’JudyCommon/JudyPrivate1L.h’
export h1=’Judy1/Judy1.h’
export hl=’JudyL/JudyL.h’

export g=’JudyCommon/JudyGet.c’
export in=’JudyCommon/JudyIns.c’
export d=’JudyCommon/JudyDel.c’
export f=’JudyCommon/JudyFirst.c’
export pn=’JudyCommon/JudyPrevNext.c’
export pne=’JudyCommon/JudyPrevNextEmpty.c’
HP INTERNAL USE ONLY page 55

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

ated
ript,
now

”,
ned to
e
re

ry

ne at
 in a

scripts
 top-

.htm,
export c=’JudyCommon/JudyCount.c’
export bc=’JudyCommon/JudyByCount.c’
export fa=’JudyCommon/JudyFreeArray.c’
export sl=’JudySL/JudySL.c’

export s=’JudyCommon/JudySearchLeaf.c’
export se=’JudyCommon/JudySearchLeafEven.c’
export so=’JudyCommon/JudySearchLeafOdd.c’

export cb=’JudyCommon/JudyCreateBranch.c’
export ib=’JudyCommon/JudyInsertBranch.c’
export cc=’JudyCommon/JudyCascade.c’
export dc=’JudyCommon/JudyDecascade.c’

export jp=’JudyCommon/JudyPrintJP.c’

This is just to get you started and give you some ideas; your mileage will vary.

7.3 Makefile

Mostly you should read about the makefile (judy/src/makefile) in the makefile itself and in rel
README files, but here’s a bit of overview. {Since then we added a rudimentary configure sc
but Judy suffers from being platform-specific rather than attribute-specific, and is only set up
and ifdef’d to compile on six platforms, see below.}

7.3.1 Makefile Concepts

Per the persuasive argument found in a paper titled, “Recursive Make Considered Harmful
which you can locate on the Web, and also on past experience, the Judy makefile was desig
be relatively monolithic. That is,makedoes not callmakeagain, recursively, any more than can b
helped, so that the single invocation ofmakeknows all dependencies globally. However, there a
exceptions:

● Building a variety of similar libraries for different hardware versions, word-sizes, and libra
types (archive/shared) was simplest using a single level of recursive call where the parentmake
modifies some parameters for the child.

● The judy/src/makefile really belongs, now, one level up as judy/makefile, incorporating all
knowledge about building other parts of the source tree that have their own makefiles or no
all. (However, some existing Makefile.deliver files are appropriate as written for execution
delivered context.) I haven’t had time to revise to this global makefile. {Half done now.}

Furthermore, for ease of use, this global makefile should be accessible through wrapper
that know how to translate command line arguments and the present working directory to
levelmake targets for subtree building, etc.

The existing judy/src/makefile does “reach up” to snag some files, such as ../doc/ext/Judy_3x
to put them in the deliver tree.
page 56 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

ents
cific

e”) or

j
er

udo-

 note
aging

rom

/src/

r
some

e.
ry

me
bout
The Judy makefile is also intended to be as portable as possible to a variety of build environm
so that the same information need not be specified redundantly. {But alas, still platform-spe
rather than attribute-specific.}

Aspects of Judy makes {using Makefile.multi rather than configure} are controlled through
environment parameters. These can be set either by the shell (as in “FLAVOR=debug mak
asmake arguments (as in “make FLAVOR=debug”). The former is safer and more typical
although neither form is as user-friendly as a command-line form might be (such as “make
debug” wheremakejis a shell script). Themakecommand itself, of course, takes targets, not oth
values, as command line arguments, which can be confusing and/or limiting.

As described earlier, Judy builds are source-pure in that constructed files are placed in
subdirectories segregated by platform and flavor. Also, deliverable files are placed in a pse
root subtree separate from intermediate files. The structure includes these components:

judy/src/platform/flavor/intermed/ # non-delivered files.
judy/src/platform/flavor/deliver/ # delivered files.

judy/src/hpux_pa/product/intermed # an example.

Note that all platform names are unique with respect to other judy/src/ subdirectories. Also
that the deliver/ tree is complete unto itself (as much as possible) such that any product pack
step should be able to build its depot or equivalent from that tree without pulling in any files f
other locations (necessarily with related path modifications). The package step might be
controlled by external files, but it should notdeliver any files other than those constructed in,
including merely copied to, the deliver/ tree.

Note that not all “interesting things” you can build in the Judy source tree are known to judy
makefile. See in particular judy/test/manual/Jmake for building some test executables.

7.3.2 Using makelog

{Probably irrelevant for Linux.}

For most software products on most platforms the output frommake(1) is long and verbose.
Ideally you could ignore the output except for the bottom line, and assume if there’s no erro
there, the build was successful. However, this is a great way to overlook warnings, and even
errors thatmake itself does not detect. Moreover,make is often told to continue despite errors or
warnings, say during an overnight build, so as to explore the build as thoroughly as possibl
Finally, not every error or warning is clearly marked as such, especially those from subsidia
commands called bymake, and somemake output contains strings like “err” or “warn” due to
filenames, etc.

To work toward reliable detection of build problems, I wrote a program calledmakelog. This is a
wrapper aroundmake that separates its output into summary and detail streams and does so
automatic logging of the detail stream by default. The program is relatively simple-minded a
HP INTERNAL USE ONLY page 57

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

r or

o

ould

e uses
udy

/

.

what constitutes expected, non-error summary output, what is a detail, and what is an erro
warning that should be flagged (marked with an inbound hyperlink) during HTML-enabled
execution. For developer use,makelog’s summary output is a good way to scan for problems.

HP-UX make is well-behaved about indenting echoed command output, which supportsmakelog
nicely. However, Gnumake (on Linux) is not so nice, somakelog would not work well in that
context, and I haven’t yet tried to even compile it there, which could also have problems. S
assumemakelogis only usable on HP-UX (sigh) unless you learn otherwise, andmakedo without
it in other contexts.

Given a usablemakelog program, which exists as judy/tool/makelog (HP-UX-only binary) to
support nightly builds under the CPF, it’s a simple matter of saying “makelog” where you w
normally say “make”. For themakelog sources, contact the MSL CPF team.

7.3.3 Useful Parameters and Targets

The Judy makefile is generally not recursive-descent. Often a recursive-descent makefile tre
top-level common include files (makefile fragments) to minimize redundant rule definitions. J
has none of that, although as a result the makefile is rather long with a lot of similar rules
explicitly spelled out. It still uses some includes, though, but as a way of mapping from an
environment parameter to platform-specific or flavor-specific variations. See judy/src/make
README for more on this.

Following is a summary of the useful environment parameters to pass to the Judy makefile

Table 7: Judy Makefile Environment Parameters

Parameter Description

PLATFORM “hpux_pa” (default), “hpux_ipf”, “linux_ia32”, “linux_ipf”, or
“win_ia32” to select make/platform.*.mk; more values likely to come

FLAVOR “product” (default), “debug”, or “cov” to select make/flavor.*.mk;
“product” bits are delivered, “debug” bits work with debuggers and
include assertions, and “cov” bits are like “product” as much as possible
but support C-Cover code coverage measurements (on platforms where
C-Cover exists)

CCPRE command to insert before $CC to preprocess files; mainly useful for
invoking judy/tool/ccpre script (“CCPRE=../tool/ccpre” or just
“CCPRE=ccpre” if ../tool is in $PATH); theccprescript expands macros
for more explicit debugging, such as “CCPRE=ccpre FLAVOR=debug
makelog”; note thatccpre is always used with FLAVOR=cov; see
‘‘Code Coverage’’ on page 61

EXTCCOPTS options to insert in all $CC command lines, such as “EXTCCOPTS=-
DTRACEJP” to turn on building with TRACEJP defined
page 58 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

ou

link

sides
mary

e

Note that it’s a feature ofmake to only rebuild targets that are out of date. So for example, if y
need to debug a particular *.c file withccpre invoked, “touch” the *.c file before doing themake
with CCPRE=ccpre so the target is in fact rebuilt. In general be careful that you [re]build and
what you intend.

The Judy makefile has a number of useful targets, which you can reference asmakecommand line
arguments, such as “make all”. The complete, accurate list of available targets at any time re
in the makefile itself, but reading that (long) file to understand them is a chore. Here’s a sum
of the most useful targets as of this writing, which are unlikely to change.

{Wrong, some have, see Makefile.}

Table 8: Judy Makefile Useful Targets

Target name Description

all the default target; make all deliverable files (only)

lib make PA-RISC 1.1 32-bit archive lib only (libJudy.a), or equivalent on
other platforms depending on $PLATFORM

libs make all archive libraries

libs_all make all libraries, including shared libraries, if any

libs_pic for HP-UX on PA-RISC (and possibly IPF later), make libJudy-PIC.a
libraries that are not normally constructed or delivered, for special
delivery to people who build Judy into their own shared libs and don’t
want to depend on a Judy shared lib at run-time

docs make delivered documents, such as manual entries, including nroff
versions auto-generated from the HTML versions using judy/tool/jhton.c

demos make demo programs, which are not built by “all”

tarchive build “all” and also a tarchive of the deliver/ tree

tarchive_contrib build a tarchive of demo (contributed) programs, which must already b
built using “demos”

tarchives make both “tarchive” and “tarchive_contrib”

release build “tarchive” and copy it to the internal website on judy.fc.hp.com;
use cautiously! -- requires manual steps, updates website

release_contrib build “tarchive_contrib” and copy it to the internal website on
judy.fc.hp.com

releases make both “release” and “release_contrib”

checkJh compile Judy.h.check.c to test the Judy.h definitions
HP INTERNAL USE ONLY page 59

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

udy

n say

ry.

k
rary.
like

sing
ith

e

in
What if you need to build Judy a special way and you don’t know how? One trick is to build J
normally using the makefile and capture its output, either directly or viamakelog, to a temporary
file, say “tempfile”. Then edit the output, usually onecc or ld command selected from it, to be
what you want, and run the resulting file through the shell, such as “:w ! ksh” invi, or “ksh
tempfile” on the commandline. If you use this method to, say, rebuild a *.o file, then you ca
“make lib” afterward to relink the library using your new *.o file. This is one nice use ofmake’s
dependencies: It only rebuilds that which it thinks is out of date.

7.4 Running and Debugging Judy

Judy is a library. So to run it, you must build an executable program that links with the libra
This seems obvious, but it’s the underlying cause of a lot of confusion and user errors.

7.4.1 Linking

Be sure you give the right options (-L, -l; or the name of the library itself) to your compile/lin
commands for the executable so you link with the intended version and flavor of the Judy lib
See for example judy/test/manual/Jmake (until/unless we roll that into a global Judy makefile
it should be.) Ensure that the library itself was constructed as you intended, for example, u
“FLAVOR=debug CCPRE=ccpre” and actually rebuilding the *.o’s you would like to debug w
macros expanded, for example:

FLAVOR=debug CCPRE=ccpre makelog lib

clean
clobber

remove intermediate or all files from the constructed files tree, but thes
are not as fast or easy as just using “rm -rf”; they are here for
completeness, but are not very useful since Judy is “source-pure”

list emit to stdout a list of “interesting source files” for searching, for
example, “grep foo $(make list)”

list_check emit to stdout a comparison between “make list” and the files present
judy/src, to manually review to ensure “make list” is kept up to date

lint run lint with waivers files on the Judy sources; however, the waivers are
typically out of date and a lot of hand-review is required

lint1 run lint on the Judy1 sources only

lintL run lint on the JudyL sources only

lintSL run lint on the JudySL sources only

Table 8: Judy Makefile Useful Targets

Target name Description
page 60 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

on’t

-bit I

resort

sing

code

ents.
k for

ed
o

re is
As the inventor of Judy is fond of saying, “If you don’t know what you are measuring, you d
learn anything from the results.” This is true for performance measurements and also for
debugging.

7.4.2 Debugging

So how do you debug Judy? Well personally I likexdb, but it went away at 11.00 (or 11.11?), and
even though I copied it to a newer OS and it works, it only works on 32-bit systems. For 64
find myself usingdde and learning to “love” its GUI. I won’t spend more time than that on
debuggers. It’s up to you to locate and learn to use the debugger of your choice. Or even just
to recompiling with printf() statements... Once you get up to speed, it’s pretty quick:

cd src # using $CDPATH in your .profile makes this simpler
edit source file
rerun previous makelog command such as “FLAVOR=debug CCPRE=ccpre
makelog lib”
cd - # back to, say, judy/test/manual
rerun previous executable compilation command such as Jmake
run your test again

Again, the tricky part about this is to be sure you rebuild exactly what you intend, while reu
previous commands. Be careful.

Be aware that there are a number of #ifdef’s in the Judy code that you can turn on to your
advantage for debugging. See judy/doc/int/coding_policies for a start, and then search the
itself, especially for “DEBUG” and “TRACE”. In particular there are various TRACE
capabilities, especially TRACEJP, which you can also search for to read about. To use them
requires setting some environment parameters; read about this in source file header comm
You can also search for the following environment parameters in the source files (or just loo
getenv()) to read about how to use some particular debugging features:

STARTADDR, KEYADDR, ENDADDR

STARTINDEX

STARTPOP, CHECKPOP

7.4.3 Code Coverage

We use the Bullseye C-Cover tool. Building with FLAVOR=cov produces a Judy library
instrumented to measure run-time coverage of branches (decisions and conditions, weirdly
referred to as “C/D” in the C-Cover commands), and a corresponding “covfile” (usually nam
test.cov). There is a lot to know about this process but it’s mostly documented elsewhere, s
there’s no need to repeat it here.

When working with cov-flavor code you must be careful to have a corresponding covfile. The
one covfile corresponding to each libJudy.*; look in the cov/deliver/ tree to see them. Avoid
HP INTERNAL USE ONLY page 61

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

do

the

er
ut
r
ount()

 too
y are,

each

here,
that
11.11
t

able

ally a
dy/
swinstalling from the depot ..., and also getting a non-null covfile (with run data in it). Instead
something like this on the test system (currently judyj):

cd /usr/lib/pa20_64
what libJudy.a
cp test_cov.a path/test_cov.a.auto
cd /opt/Judy.cov/usr/lib/pa20_64
what libJudy.a # must equal build ID from previous what.
cp libJudy.a path/libJudy.a

Now in path you have a libJudy.a with a non-null matching covfile. If the twowhat outputs
disagree only a little (same night), that’s OK, use the latter libJudy.a because it’s definitely
right one. The build ID in libJudy.a tells you which build you are working with.

Now you can “cppath/test_cov.a.autopath/test_cov.a.manual” and “covclearpath/
test_cov.a.manual”, and use it, and then “covmergepath/test_cov.a.autopath/test_cov.a.manual”.

The reason whyccpreis always used for FLAVOR=cov builds is that this is required for C-Cov
to disambiguate multiple *.o files built from the same *.c file with different -D options. Witho
usingccpre, C-Cover only recognizes one set of branches, from one of the compilations. Fo
example, if one compile pass generates Judy1Count() code and the other generates JudyLC
code, the branches from JudyCount.c are not duplicated, resulting in a total C/D that’s way
low. In many cases, both functions are not even represented in report output; and even if the
it’s incomplete, such as:

Judy1Count ...src/JudyCommon/JudyCount.c 121 0 / 1 0 / 0
JudyLCount ...src/JudyCommon/JudyCount.c 123 0 / 1 0 / 66 = 0%

(In this case I’m not even sure why Judy1Count() even showed up.)

Usingccpre means the compiler, hence C-Cover, sees a separate, preprocessed *.c file for
*.o file, as desired, but then to usecovbr you must work with these “intermed” names, such as
“JudyPrevNext_JudyLPrev_pre.c” (which is the source file derived from JudyCommon/
JudyPrevNext.c using -DJUDYPREV and -DJUDYL).

7.4.4 Regression Tests

{Not yet public as of this writing? Or perhaps via CVS only?}

Once again there is a lot to say about this subject, but most of it is already documented elsew
so I’ll be brief here. Start with judy/test/README and explore the tree below there. Be aware
the test structure might be arcane or unnecessarily complex. During the first Judy release, to
OEUR, we went through several gyrations trying to use variations of TET (Test Environmen
Toolkit, a testing environment) before giving up and working with a private subset that is port
but merely reminiscent of TET.

The general concept is that there is a directory for each test case which contains a file, norm
shell script called “prog”, which is invoked to build, run, and clean up after each test. The ju
page 62 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

uccess
test/
, and

iled

rking

 to
cleanly
ge up
se we

iation
n

and a
ing
ppy (if
lly

thor of
or all
or

We
 care

e:
test/test_registry.db file lists these scripts and indicates when they are to be run. In case of s
the prog directory is cleaned out, otherwise various files are left around and copied to judy/
BAD subdirectories. These files include “stdout” and “stderr”, which are the expected results
“resout” and “reserr”, which are the actual results that differ (use diff to compare the files).

Moreover, the CPF nightly runs HTMLize their results..., browsing all the way down to deta
results for failed runs, although you can’t diff the output files this way. There’s lots of online
documentation here too. I hope you can get up to speed by studying the files, including wo
examples.

For best results in the regression tests, forsuccessful runs, do not write out things like dates,
times, timings, directory paths, ... that might change from run to run. If the testfails, write
everything you need (to stdout or stderr) to help debug the problem.

The tests are mostly run once for each flavor, but some are intended for FLAVOR=cov only
increase branch coverage. As a general rule you should keep the nightly processes running
by fixing any problems that arise, and you should write new regression tests to keep covera
to “100% or know why not” as new code or branches are added. For the original Judy relea
were able to attain around 90% code coverage.

Some things to remember while working on regression tests:

● Currently we support regression tests on HP-UX PA-RISC only, and for CPF overnight
invocation only -- developers must invoke each test by hand.

● Each test program must come with “stdout” and “stderr” reference files such that any dev
in the “resout” and “reserr” files (or non-zero return from the test program) is considered a
error. Write your tests accordingly.

● Each test program (source form) is dropped into a directory with the stdout and stderr files
“prog” script that you clone and customize from a model. (Have fun with this. After painstak
work on the Judy source code, here’s a place where you can go nuts, cut corners, be slo
you must), etc. After all, it’s “just” internal tools.) This script builds the test program, hopefu
in a standard way, and invokes it as many times as you like.

● Each test directory is registered in a database; see judy/test/test_registry.db. You (the au
the prog script and associated test program(s)) must decide if you want this prog invoked f
flavors, or if not, which flavors; and for all five (HP-UX PA-RISC) Judy libraries, or if not, f
which libraries.

● Each invocation of a prog script (for one flavor + library) counts asonetestcase to the CPF, even
if there are many invocations of the embedded program. This is not ideal but it is simple.
really only care about N of N tests passing, and the coverage percentage; we don’t really
what is N.

● You can invoke any prog manually, outside the CPF, if you know how... Here’s an exampl

JUDY_TEST=/users/ajs/judy/test FLAVOR=cov JUDYLIB=32a time prog
HP INTERNAL USE ONLY page 63

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

judy/

 you

this
tem,
/

le

is

t was)
d in

vfile
ay

ht’s

, and
ut and
Look around at the prog scripts for how $JUDYLIB, etc. are used. Also study files under /
test/, starting with /judy/test/README.

● If you want to invoke a TET test via the “prog” script, and you want FLAVOR=cov, and you
don’t want to share the test.cov file with other users on the system from a global location,
can use a private covfile. For example:

$ cd /users/ajs/judy/test/auto/JudySL/multi # test location.
$ cp /usr/lib/test.cov_a test.cov # private copy.
$ covclear # clear it.
$ JUDY_TEST=/users/ajs/judy/test/ FLAVOR=cov JUDYLIB=32a prog ...

Now this test runs automatically with the local covfile. Beware: If the last overnight test on
system, say judyj, was not cov, which it normally isn’t, the native Judy libraries on the sys
such as /usr/lib/libJudy.a, are not FLAVOR=cov; you can copy them back from under /opt
Judy.cov/, but coordinate this with other users.

● Be careful when you usecovbr that the source file you reference really does match the covfi
you’re using. C-Cover is dumb about multiple *.o’s compiled from a single *.c, so we useccpre
for all FLAVOR=cov compilations, and we build cov flavor from preprocessed *.c files. (Th
also expands macros, which is nicer forcovbr analysis too.) But now the *.c files are very
sensitive to system header files. We build Judy in an 11.00 BE because there is (or at leas
no 11.11 BE. So the nightly intermed/*/*_pre.c files are different than those you might buil
your sandbox on 11.11.

So, how do you use the right source file for the covfile? It depends. If you build both the co
and the sourcefile in your sandbox you are probably OK. But if you pull a nightly covfile, s
for use in a TET prog directory (since you are linking against native libraries from last nig
build), and you want to usecovbr too, you can’t just refer to a *_pre.c file in your sandbox.

7.4.4.1 Regression Tests -- Examples

For what it’s worth, here’s information written earlier by a Judy test creator:

When you are ready to create regression tests, please look at both of these examples.

The first sample shows a local regression test program, “hello.c”, which prog compiles, runs
reports the status of. If there is an error, or mismatch of stderr or stdout, prog leaves the reso
reserr (and other work files and the SAVE directory) available.

$ ll test/auto/Judy1/template_c/
total 14
-r--r--r-- 1 jer users 267 Feb 22 10:39 hello.c
-r-xr-xr-x 1 jer users 2172 Feb 22 10:39 prog
-r--r--r-- 1 jer users 104 Feb 22 10:39 stderr
-r--r--r-- 1 jer users 117 Feb 22 10:39 stdout
-rw-r--r-- 1 jer users 94 Feb 23 09:20 tet_captured
page 64 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

y/src/

table.

le

.

udy

TE).
The second sample shows a benchmark test, where the “*.c” program is in the normal ~jud
apps/benchmark directory as “JLB_InsGet.c”. Themake command runs in that directory and
environment... and the program is run from there. There is no extra local copy of the execu

$ ll test/auto/JudyL/JLB_InsGet/
total 12
-r-xr-xr-x 1 jer users 2331 Feb 22 15:34 prog
-r--r--r-- 1 jer users 104 Feb 22 14:03 stderr
-r--r--r-- 1 jer users 225 Feb 22 15:31 stdout
-rw-r--r-- 1 jer users 94 Feb 23 09:20 tet_captured

Note that the output files, stderr and stdout, do contain some TET specific stuff, and a simp
“Hello world.” or “SUCCESS”. I recommend a simple “PASS” or “FAIL” as the output. I also
recommend following (name of engineer deleted to protect the innocent)’s lead, as he
implemented a “-R” option for regression testing, so that the program only outputs “non-
changing” stuff and the “PASS” or “FAIL”. Please besure to give a return code of 0 with “PASS”.
Lacking a 0 return code, TET assumes the test failed, no matter what it reports!

If there is a failure, the option “-R” can be removed and a manual test will show the problem

Synopsis of the details for a successful regression test implementation:

● A local TET script, “prog”, does the setup, run and report analysis.

● The “prog” script is able to run in the TET environment or standalone.

● Be able to compile the test program in the Judy environment.

● Be able to use the /opt/Judy*/[lib|include]/* files in the standard makefile in the standard J
tree.

● Implement a “-R” “regression = quiet” option for regression testing.

● Output only “non-changing” stuff and the “PASS” or “FAIL”.

● Give a return code of 0 with “PASS”, else the test fails.

(End of previously written text.)

7.4.4.2 Regression Tests -- Checkpointing

The Judy regression tests include an odd and little-used feature.

If you donot set $CHECKPOINT in the environment, the tests should run about as they did
before the feature was added, with only trivially longer durations (< 1%).

If you do set $CHECKPOINT in the environment, the tests take alot longer, perhaps 2-3x longer,
but they report all cases where the $COVFILE is not updated by the test (a serious blunder
marked as ERROR), or where the metrics in the $COVFILE did not change (marked as NO
HP INTERNAL USE ONLY page 65

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

s
ver, the
s), we

akes
This is to allow us to find bugs in our regression tests where they fail to update the covfile a
expected, and perhaps where they are worthless because they add no C/D coverage. Howe
latter is debatable because so long as the tests run within the time allotted (whatever that i
probably don’t care if they are redundant.

Note well: Currently the checkpointing feature writes its errors and notes to stdout, which m
tests appear to fail if $CHECKPOINT is enabled and there is anything to report.

7.5 Delivering Judy

We wrote up the process separately... {and it’s irrelevant to non-HPUX}
page 66 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

r

Appendix A: Examples of Judy Trees

Empty Judy1 and JudyL arrays are identical; otherwise the trees vary because only JudyL
associates a value with each index. These examples also illustrate conventional symbols fo
sketching Judy objects on paper or whiteboards.

Figure 23a: Examples of Judy1 Arrays (Trees)

0
empty Judy array

I

Judy1 array with 1 index

I1

Judy1 array with 2 indexes

I2

RL

RL

30 I2

Judy1 array with 31 indexes

I1 I3RL ... I28 I29 I31I30

Judy1 array with 32 indexes

B1 ...

JPM

I1 I3

Judy1 array with 32 indexes

I2 I4L I5 I6 I8I7

JPM

clustered in one 0..255 expanse

in two different expanses

BL

I9 I11I10 I12 ... I29 I30 I32I31L

00010011000 00000101000

contains 2 leaf JPs + 5 null JPs

I1 I3

Judy1 array with many indexes

I2 I4L

...

JPM

BU

...

...BU

BU

1 leaf JP, 1 uncompressed
branch JP, 2 full JPs,
and 2 immediate JPs

2-byte indexes (narrow ptr)

1 full JP and 1
uncompressed branch JP

... ...

various branch or leaf JPs

2 I2

Judy1 array with 3 indexes

I1 I3RL

3 I2

Judy1 array with 4 indexes

I1 I3RL I4

(2 words of memory)

(2 words)

(4 words)

(6 words)

(JAP Type = 0)

(JAP Type = 6)

(JAP Type = 4)

(JAP Type = 6)

(JAP Type = 6)

(JAP Type = 6) (32 words)

(JAP Type = 7)

(JAP Type = 7)

(JAP Type = 7)

0

BL contains 1 leaf JP + 6 null JPs

(under narrow pointer)

(2 bytes,

(3 bytes each)

(note: BranchU’s are normally fuller unless
opportunistically uncompressed)

narrow ptr)
HP INTERNAL USE ONLY page 67

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm
JudyL adds value areas, which radically changes some of the structures.

Figure 23b: Examples of JudyL Arrays (Trees)

0
empty Judy array

I V

JudyL array with 1 index

JudyL array with 2 indexes

RL

RL

30 I2

JudyL array with 31 indexes

I1 I3RL ...V28V29 V31V30

JudyL array with 32 indexes

B1 ...

JPM

JudyL array with 32 indexes

L

JPM

clustered in one 0..255 expanse

in two different expanses

BL

I9 I11I10 I12 ... V29 V30 V32V31L

00010011000 00000101000

contains 2 leaf JPs + 5 null JPs

JudyL array with many indexes

L

...

JPM

BU

...BU

BU

1 leaf JP, 1 uncompressed
branch JP, and 2 single-
index immediate JPs

1 single-index immediate
JP and 1 uncompressed

... ...

various branch or leaf JPs

JudyL array with 3 indexes

RL

JudyL array with 4 indexes

RL

(2 words of memory)

(4 words)

(JAP Type = 0)

(JAP Type = 1)

(JAP Type = 2)

(JAP Type = 3) (8 words)

(JAP Type = 3) (12 words)

(JAP Type = 3) (64 words)

(JAP Type = 5)

(JAP Type = 5)

(JAP Type = 5)

I1 V1I2 V2

2 I2I1 I3 V1 V2 V3

3 I2I1 I3 ... V2 V3 V4V1

BL contains 1 leaf JP + 6 null JPs

P0 P2 P7

V1 V3V2 V4 ... V8 V9 V10 V11 V14V13 V15...V31 V32

I1 I3I2 I4 ... V5 V6 V8V7

(P and V each 1 word)

(note: each I < 1 word; each V = 1 word)

I1 I3I2 I4 ... V5 V6 V8V7

(note: BranchU’s are normally fuller unless
opportunistically uncompressed)

branch JP

V12
page 68 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

 IV,
that
nt I

 to
emic)
ment!

f the
s

that
”. In
d,
t to

 in
tate
ote:
een
d for

h as
ring
of
new
e
n for

er) of a
 to the
Appendix B: Glossary/Lexicon

The follow list of terms was originally written in May 2000, based on Judy III and early Judy
without reference to outside academic sources (oh well), as an ordered series of concepts
progressed logically rather than alphabetically. In merging the old Lexicon with this docume
decided to maintain a glossary as an appendix, but to simply order it alphabetically and try
bring it up to date. I also can’t promise that our local definitions agree with consensus (acad
usage... Or even that every term or concept listed here is in fact used elsewhere in this docu
But perhaps this glossary will be useful to readers anyway. It does “say the same thing
differently” from the rest of this document, and even adds some new material.

See also the glossary in the external “Programming with Judy” book.

Abstract data type (ADT): Any data structure that can hold a variety of specific “key” data
types, such as integers or characters. It’s the relationship between the keys, not the type o
keys, that defines the ADT. We also use ADT to refer to cases in which a data structure ha
variable parts (nodes) to adapt to the data being stored.

Adjacent: Given all possible index sets, an adjacent of any index set is any other index set
differs from the first by the performing any one of a set of one or more “adjacency operations
the Judy context, the useful and interesting adjacency operations are, “insert one index” an
“delete one index”. In other words, the only way to get from one index set to another (excep
the null set via Judy*FreeArray()) is by inserting or deleting a single index. By comparison,
attacking the Traveling Salesman Problem some useful adjacency operations might be, “ro
any subset of the route by any amount”, or, “reverse the order of any subset of the route.” N
Adjacency is a kind of neighboring, but at a higher level of abstraction. It’s a relationship betw
two index sets rather than between two indexes. To avoid confusion, a different term is use
the relationship between index sets.

ADT: See Abstract Data Type.

Amortization : Dividing some usage of time or memory space over a larger set of objects, suc
indexes, such that the usage of interest is trivial in comparison. When a cascade occurs du
index insertion, more memory is required, say to create a new branch node. If the number
indexes involved in (or rearranged by) the cascade is large enough, the relative amount of
memory needed to complete the cascade is small by comparison to the whole. To maximiz
locality and minimize the need for hysteresis, the data structure should maximize amortizatio
the average and/or worst case cascade. Amortization can also be applied to the fan-out (ord
tree’s nodes. The wider the nodes (branches), the less overhead there is in the tree relative
“payload” (user or application data) in its leaves, unless the branches are many and sparse
(containing many null pointers).

API : Application Programming Interface, a specification of the signatures of a collection of
useful methods or functions and possibly global variables.
HP INTERNAL USE ONLY page 69

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

of
ted
y-
nses).
tains
s’’ on

udy,
t in a
index
at one
ated
 on

 a
order
an just
at

is,
n
ith one
or

ning
ature as
eans

bits
it size
ctable

by-
ut tend
ng of
alue of
Bitmap branch [node]: A Judy digital tree node that uses 256 bits (32 bytes) to indicate which
the 256 subexpanses are populated (by indexes) and have corresponding JPs. The popula
subexpanses are listed by-expanse in the bitmap, but the corresponding JPs are packed b
population (no null JPs, at least until/unless we add uncompressed bitmap branch subexpa
Bitmap branches are two-tier objects to minimize insert/delete time; that is, the first level con
ordinary pointers to subarrays of 1..32 JPs for each of 8 subexpanses. See ‘‘Bitmap Branche
page 34.

Bitmap leaf [node]: In a trie, once the expanse reduces to a small enough size, in practice in J
256 indexes = 1 byte worth of undecoded indexes, if the population is not small enough to fi
linear leaf node, it can be more efficient to represent the expanse’s (population’s) indexes (
set) as a bitmap (256 bits = 32 bytes) than as a list of index values (could be as many as 256
byte each). For Judy1 a bitmap leaf is just simply a bitmap; for JudyL there are also associ
value areas in 1..8 [1..4] subarrays of 1..32 [1..64] value areas each. See ‘‘Bitmap Leaves’’
page 47.

Branch [node]: A non-leaf node in a Judy tree other than a JPM node. This term is used as
noun, although this is a bit weird at first (but it is used this way in academic papers too), in
to give a more specific name to this type of node. Note that Judy branches contain more th
pointers (addresses); they contain JPs (Judy Pointers), which are a type of “rich pointer” th
associates information with the address. See ‘‘Judy Branches’’ on page 33.

Branch width (fanout): The number of possible (virtual) or actual pointers in a branch, that
the number of subtrees, which is related to, but not identical to, the branch’s memory size i
words or bytes. A branch node divides an expanse into a collection of subexpanses, each w
associated pointer, some of which can be null (if the subexpanse is unpopulated). A linear
bitmap branch has an actual fanout (width) lower than its virtual width, whereas a Judy
uncompressed branch has virtual fanout = actual fanout = 256.

By-expanse: Dividing an index set into subsets, as in a hierarchical data structure, by partitio
the indexes according to a prearranged series of subexpanses, also referred to in some liter
“a priori” storage. A digital tree is a by-expanse tree. In practical terms by-expanse storage m
subdividing evenly, and with the same fanout at each level, in fact using whole numbers of
(2^N fanout at each branch node). Judy divides index sets by-expanse with a very wide dig
of 8 bits (256 fanout). By-expanse trees are by nature unbalanced, but can also have predi
depth for fixed-size keys.

By-population: Dividing an index set into subsets, as in a hierarchical data structure, by
partitioning the indexes according to which indexes are present. A binary storage tree is a
population tree. The partitioning rules are prearranged as is true for by-expanse storage, b
to be more about tree balancing than about locality of modifications, meaning the partitioni
any newly inserted indexes depends more on the index set already stored than about the v
the new index itself.

Cache fill: See CPU Cache Fill.
page 70 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

a lower-
ring an
the

s,

 it, or
count

 can be
ween
r

n
l
ssibly
ited.

he
ache
 a disk

r disk

om
, but
dern

ain

des.
Cache line: See CPU Cache Line.

Cascade: During insertion of an index, this is when a leaf data structure overflows and more
nodes must be added to a tree (or in some cases the leaf’s indexes can be compressed into
level leaf under a narrow pointer). A decascade (coalesce) is when the opposite occurs du
index deletion. Cascading results from changing an index set into one of its adjacents -- in
Judy context, by inserting or deleting one index.

Compressed branch: A linear or bitmap branch.

Compressed leaf: A bitmap leaf; also used to refer to index compression in lower-level leave
wherein the already-decoded (at higher levels) leading digits are not present.

Counting tree: A tree where each branch node records the number of indexes stored under
equivalently, as in Judy1 and JudyL, where each pointer in the branch node has associated a
of the indexes stored under or in the branch or leaf pointed at by the pointer. These counts
used to rapidly determine the number of valid indexes in any range or expanse, that is, bet
any pair of indexes. They are also useful internally when inserting, deleting, or searching fo
previous or next indexes.

Alternatively, each node or pointer could have associated a count which is a total of the
application’s values associated with each index in its index set. This can be useful in certai
applications for determining index value density instead of index density. Note: Wider digita
branches, even if otherwise efficient (meaning few null pointers), cause more work, and po
more cache fills, while gathering counts, since every pointer in the wide branch must be vis
See ‘‘Decode and Population Fields’’ on page 39.

CPU cache fill (cache line fill): Needing to go to main memory (RAM), as the result of a cac
miss, for one or more bytes not currently in any cache line on a CPU chip; results in filling a c
line; takes 30-150 times longer than a cache hit. Note that sometimes a cache fill results in
(buffer) cache miss and fill (swap in), by reading from mass storage, which is even more
expensive. In this document, “cache” refers to CPU cache lines and does not even conside
cache.

CPU cache line: A block of memory local to a CPU chip that caches the same-sized block fr
the computer’s main memory. This is analogous to using a buffer cache to minimize disk I/O
is implemented in hardware. Cache lines are size-aligned and typically 16 words in size in mo
processors. Often there are hidden constraints on them, such as they can only map to cert
offsets in memory.

Decascade: See Cascade.

Decoded index bits/bytes/digits: The most-significant bits/bytes/digits of an index that were
already used, while traversing the tree, to do address calculations in higher-level branch no

Density: A population divided by its expanse.
HP INTERNAL USE ONLY page 71

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

 a

N
ee the
 into
 are
of as
need

 each
t that

er

r
 of 0..

ctice
grew
ble-
JudyL
ee also

red,
ome

 to a

e
anse
 fills

hen it
ction”
Digit : A key, or a field, or portion of a key, that is used to address through a branch node in
digital tree. For Judy each digit is one byte (eight bits), “very wide” as digital trees go.

Digital tree = trie : A tree data structure in which each node divides its expanse uniformly into
same-sized subexpanses, each with its own pointer to a next-lower node. In a pure digital tr
indexes need not be stored in the tree. They are used (piecemeal, digit-by-digit) to address
each node’s array of pointers. Hence N is typically a power of 2, so integer numbers of bits
“decoded” from the index while traversing down the tree. An ordinary array can be thought
a one-level trie where the entire index is used in a single addressing calculation. Note that N
not be the same for every node in a trie, if there’s a way to determine the appropriate N for
node. For Judy, N = 256 (8 bits) at every level, but compressed branches have an actual fanou
is less than their virtual fanout. See ‘‘Digital Trees’’ on page 10.

Dynamic range: The population (size) or population-type (distribution of keys or indexes) ov
which an algorithm or data structure works well (untuned or with tuning). Judy has a wide
dynamic range. See ‘‘Judy Dynamic Ranges’’ on page 24. Most ADTs work well only over
specific, “tuned” or designed-in (limited) dynamic ranges.

Expanse: The range of possible indexes (keys) that can be stored under one pointer (root o
lower) in a tree structure. For example, a root pointer to a 32-bit Judy array has an expanse
2^32-1.

Fanout: See Branch Width.

Fixed-size index: A key to an array-like data structure which is always the same size, in pra
one machine word in size. Judy1 and JudyL support fixed-size, one-word indexes only. Judy
out of a need to solve this problem efficiently, although in the academic literature only varia
size index problems seem to be considered interesting. Ironically a meta-trie consisting of
arrays as very-wide branch nodes can be used to support variable-size keys quite nicely. S
judy/doc/int/variable_size_keys.*.

Grow-in-place: Allocating memory in chunks that are often larger than the actual bytes requi
by rounding up to a lesser number of different memory chunk sizes, means there is often s
padding present in a given node. Thus the node can be modified in place during an insert
operation, and it can also shrink in place during a deletion without having to be reallocated
smaller size.

Horizontal compression: See Index Compression.

Hybrid data structures: Using different ADTs at different levels or for different nodes in a tre
data structure. This means switching to a different ADT while traversing the tree as the exp
and/or population shrinks, to best represent the population’s indexes with the fewest cache
and the least amount of memory.

Hysteresis: Leaving a system (in this case a Judy data structure) in a previous state even w
could be modified to a new state, with the result that the present state depends on the “dire
page 72 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

exes
se of
rm for
t can
t
timal
 of

nt)
haps
ter in a
f node
to the

n
-
x

om

his
equal

 units
, and
y
ther
a CPU

nter,

on’s set
 set in
at index
(such as insertion or deletion) from which it was approached. Any application that deletes ind
is likely to perform a series of insertions and deletions, often within a relatively small expan
indexes. Hence it might be faster on average to not revise the data structure to the optimal fo
each new index set (after each operation). Especially upon deletion followed by insertion, i
result in superior performance if decascades are postponed. The risk with hysteresis is tha
random or pathological sequences of insertions and deletions can result in a greatly subop
data structure -- and it’s difficult to identify them or rule them out. Judy presently makes use
limited hysteresis (one index at most) in some cases of deletion.

Immediate indexes: Similar to how a machine instruction can contain an immediate (consta
rather than indirect (variable) value, if the population in a Judy expanse is low enough (per
just one index), depending on the data structure (memory space associated with each poin
branch), the population’s indexes can be stored locally in a JP rather than in a separate lea
under the JP, saving one indirection and possibly some memory. This requires encoding in
JP the special case of immediate indexes. See ‘‘Immediate Indexes JP’’ on page 41.

Index: A key to an array or to an array-like API.

Index compression = horizontal compression: At any level in a tree data structure, all indexes i
the current population (index set within the current expanse) might have one or more most
significant bits (MSB) in common. These common bits can be stored just once in multi-inde
shortcut leaves, in a variety of possible “compression schemes”, such as:

● Storing the first valid index in full and the others as relative offsets, either from the first, or fr
each previous.

● Storing the common bits only once, and for each valid index, only the bits that might differ. T
is the same as relative offsets, all from the first value, which is a base value not necessarily
to any one of the indexes.

In practice, due to machine instruction efficiencies, common MSBs are compressed only in
of whole bytes. For example, in a 32 bit system, there might be 0, 1, 2, or 3 common bytes
thus 1, 2, 3, or 4 varying bytes, in the indexes in a leaf. At a low enough level in the tree, sa
where 3 bytes were already decoded, only 1 byte can vary. Furthermore, Judy does not bo
with the kinds of complex compression schemes described above because we think the extr
time involved would outweigh the space savings. Judy does have the ability to compress a
collection of indexes to a lower-level leaf, which has a greater capacity, under a narrow poi
which skips 1 or more common leading bytes, if all of the indexes in the expanse are in the
narrower leaf’s expanse.

Index set: Given a data structure capable of holding 0..N indexes (keys, elements), any one
[sub]set of those 0..N indexes is an index set. For a given expanse, each possible populati
of indexes is one index set. It must be possible to store and distinguish every unique index
the data structure, regardless of the sequence of insert/delete operations used to arrive at th
set, or else the data structure is not very useful. Of course, Judy arrays pass this test.
HP INTERNAL USE ONLY page 73

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

y

ch
ll

ptive

y/tree
mory
turn
ement

cept
ys are
 be

d

trie
n

ds a

in
 for an
ge 39.
Index: A key value to an ADT that appears array-like at the application interface. Since Jud
appears array-like, keys into Judy ADTs are referred to as indexes.

Informational pointer : See JP.

Iteration : Reread this sentence until you are tired of reading it.

JP: Judy Pointer, a two-word object that populates branch nodes, also referred to... as a “ri
pointer” or “informational pointer”. A JP contains an address field, except when the JP is nu
(represents an unpopulated subexpanse) or contains immediate indexes, plus other descri
fields such asDecode bytes,Population count, andType. See ‘‘Judy Pointer (JP)’’ on page 38.

JPM: Judy population/memory node, at most one per tree (Judy array), used when the arra
population is too large to fit in a root-level leaf and hence is large enough to amortize the me
needed for the JPM. A root pointer points to a JPM which contains a top-level JP which in
points to a top-level branch node. The JPM contains additional fields that make tree manag
faster and easier. See ‘‘Judy Population/Memory Node (JPM)’’ on page 31.

Judy array : An ADT that acts much like an ordinary array, but which appears unbounded (ex
by the expanse of the index) and is allocated by the first store/insert into the array. Judy arra
hybrid digital trees consisting of a variety of branch and leaf node ADTs. Judy indexes can
inserted, retrieved, deleted, and searched in sorted order.

Judy pointer: See JP.

Judy population/memory node: See JPM.

Judy tree: The internal data structure used to implement the data stored in what is presente
externally as a Judy array.

Judy1: Bit array that maps a long word index to Boolean (true/false).

JudyL : Word array that maps a long word index to a long word value.

JudySL: Word array with string index; map string index to long word value. Built as a meta-
using JudyL arrays as extremely wide branch nodes. (Includes the use of JLAP_INVALID i
JudyL value areas (subsidiary root pointers) to “escape” to shortcut leaves for unique string
suffixes, a critical though subtle feature.)

Key: A data value (bitstring) used to look up related data values in a data structure that hol
collection of keys. See also Index.

Level compression = vertical compression: In the academic sense this means skipping levels
the tree when a branch node would otherwise have a fanout of 1. Read about Patricia tries
example. Judy does this using narrow pointers. See ‘‘Decode and Population Fields’’ on pa
page 74 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

fanout

in
ding

ways
 is, to

ging
s very
orst-

ely

free
ical
hould

reuse
bout

le, a

s
x leaf

ient

ith a
losely
row

d-size
Linear branch [node]: A Judy non-leaf branch node for a low-fanout population. Linear
branches are constrained to one cache line = 16 words, hence hold 1..7 JPs out of a virtual
of 256. Populated subexpanses are listed by-population (1 byte/digit each), along with a
corresponding list of JPs. See ‘‘Linear Branches’’ on page 33.

Linear leaf [node]: A multi-index leaf (a terminal node) that holds a population too large to fit
an immediate index JP but small enough to fit in 2 cache lines (for JudyL, 4 cache lines inclu
value areas). By convention a root-level leaf is referred to separately, and a linear leaf is al
below the root level. Note that a linear leaf is never large enough to be fully populated, that
hold 256 indexes. See ‘‘Linear Leaves’’ on page 44.

Locality : Designing a data structure so a single insertion or deletion has the least wide-ran
effects on average and/or in the worst case. Ideally, every index set’s optimal data structure i
similar to every adjacent index set’s optimal data structure, implying excellent average and w
case locality. If this cannot be achieved, at least instances of poor locality should be relativ
rare. See ‘‘Usage of Data Structures’’ on page 50.

LSB: Least Significant Bytes/Bits.

Memory manager: Any dynamic multi-node data structure like Judy requires an underlying
memory manager from which it can obtain chunks of memory, and to which it can possibly
(return) them. To minimize wasted memory and reduce the frequency and cost of patholog
cases due to memory fragmenting into small and non-reusable chunks, the data structure s
use the minimum number of different sizes of memory chunks, maximize the frequency of
of freed memory chunks, and/or the memory manager itself should be smart and efficient a
merging adjacent free chunks into larger ones for reuse. (Themalloc(3C) library is an example o a
memory manager.)

Meta-trie : A hybrid digital tree (trie) whose branch nodes are in turn smaller tries. For examp
variable-size key trie might use fixed-size key tries like JudyL arrays as its branch nodes,
especially given an “escape” mechanism like JLAP_INVALID to mark a JudyL value area a
being other than a root pointer to a subsidiary JudyL array, such as a shortcut or multi-inde
node. ...

MSB: Most Significant Bytes/Bits.

Multi-index leaf : If the population of an expanse in a trie is small enough, it can be more effic
to store the population’s indexes in a multi-index leaf object rather than under additional trie
nodes leading to single-index leaves.

Narrow pointer : Suppose that high in a digital tree data structure there’s a large expanse, w
population large enough to not fit in a single leaf node, but whose members are clustered c
enough to have lots of index compressibility due to common leading bits/bytes/digits. A nar
pointer is a way of simultaneously skipping levels and unoccupied expanses in the tree.
Associated with the narrow pointer must be the common index bits being “decoded” via the
pointer, unless the whole indexes are stored in the leaves. Judy1 and JudyL support only fixe
HP INTERNAL USE ONLY page 75

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

 by

 valid

use
array

 best
cency

mal

y IV.
ware
code

tween

ally,

ze of a
dex.

at
inter,
l

n
ns (or
indexes (1 word each), soDecode bytes in the JPs in the branches describe the digits skipped
narrow pointers. See ‘‘Decode and Population Fields’’ on page 39.

Neighbor: In a sorted index set, the neighbor of any index (element) is the previous or next
index in the index set. One of Judy’s strengths is its ability to rapidly locate neighbors.

Opaqueness: The property of hiding the internal details of a data structure or algorithm. Beca
Judy is very opaque, the application sees it purely as an array. Users don’t need to know the
is implemented as a tree, or actually as an even more complex hybrid ADT.

Optimal data structure: Given a set of unambiguous criteria, if they exist, by which to rank
different data structures capable of holding the same index set, there should be exactly one
data structure to represent each possible index set. Ideally the implementation of each adja
operation would then convert an optimal data structure (for one index set) into another opti
data structure (for its adjacent index set). It’s possible to have no unambiguous criteria for
optimizing data structures. For example, Judy seeks to simultaneously:

● Minimize index access (get) time, both average and worst-case.
● Minimize index insert/delete time, both average and worst-case.
● Minimize memory consumed and thus maximize efficiency.
● Be as simple as possible -- but we had to give this up in the transition from Judy III to Jud

We learned that a wide dynamic range plus high-performance (although still portable) soft
requires a lot of different data structures (tree nodes) to pick from, plus maximally in-line
with minimal functions, loops, etc.

(See also ‘‘Judy Dynamic Ranges’’ on page 24.)

The optimal data structure for any index set depends sensitively on the tradeoffs chosen be
conflicting criteria, and might not even be “computable”. (It worries me that whenever this
ambiguity or complexity exists we might overlook better data structures or algorithms.) Ironic
space and time need not always be in conflict. Using data compression techniques to save
memory, at the cost of some CPU time to compress/decompress, can reduce the overall si
data structure, hence average CPU cache fills, resulting in less overall time to access an in

Outlier : An index that falls within a given expanse but not within a narrow subexpanse of th
expanse. For example, given indexes all beginning with 0x0102... in a leaf under a narrow po
an index beginning with 0x0103... would be an outlier under slot (digit) 0x01 of the top leve
branch. See ‘‘Usage of Data Structures’’ on page 50.

Parent [node]: A branch that contains a pointer to some other node (a child node).

Pathology: A pathological index set is one that brings out the worst-case behavior in a give
algorithm and/or data structure. A pathological case is a sequence of insertions and deletio
other adjacency operations) that result in a pathological index set and/or a suboptimal data
structure, and/or which takes much longer to perform than the average.
page 76 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

s (that

okup
 line

f this.

y

ue
s). The
starts
 root

f
f 1, it
 the
e
n
dySL

such

shion,
inary
uch as

pile
exes
Population: The number of indexes that are stored in one expanse, or the indexes themselve
is, the index set), depending on the context.

Positional lookup: Data, such as pointers in a trie node, which are located via address
calculations rather than by linear, binary, or any other type of search. Note that a positional lo
results in at most one cache fill -- so long as each data element itself does not cross cache
boundaries -- no matter how large the array or node in which the positional lookup is done.

Recursion: See Recursion. (Note: For performance reasons the Judy code uses very little o
The “goto” statement is alive and well.)

Rich pointer: See JP.

Root pointer: A pointer to the top node of a tree structure. (Tree data structures are typicall
drawn upside down, with the root at the top and the leaves at the bottom.) See ‘‘Judy Array
Pointer (JAP)’’ on page 28.

Root-level leaf: A simple linear list of whole indexes, possibly (in JudyL) with associated val
areas, used for low-population Judy arrays (less than or equal to 31 indexes = 2 cache line
root pointer indicates the presence and type of the root-level leaf. A generic root-level leaf
with a population count word. Small root-level leaves have their populations encoded in the
pointer to save memory. See ‘‘Root-Level Leaves’’ on page 29.

Shortcut leaf: By default, a full trie for a fixed-size index contains a fixed number of levels. I
below a certain point there is only one index stored, that is, an expanse has a population o
can be considerably more efficient to store that index in a non-trie leaf object directly below
last node containing 2 or more indexes in its expanse. A shortcut leaf must contain all of th
remaining undecoded bits of the index it contains, since they are not encoded positionally i
additional trie nodes. Shortcut leaves are mainly useful for variable-size key trees such as Ju
arrays, although multi-index leaves can be seen as a type of shortcut leaf too.

Sibling branch [node]: A branch node with the same parent as another branch; a peer.

Sorted index set: An index set whose members are uniquely sorted according to some rule,
as numerically or lexicographically.

Tree data structure: A hierarchical ADT in which the non-leaf nodes (in the graph sense)
contain pointers to (that is, addresses of) other nodes, in an acyclical and non-multi-path fa
possibly in addition to other data stored in the non-leaf nodes. A “storage tree”, such as a b
storage tree, is usually stored by-population and requires balancing, whereas a digital tree, s
a binary digital tree or a Judy tree, is stored by-expanse.

Trie : See Digital Tree.

Unbounded array: An array maps an index to a value. Normally an array is defined (at com
time) or allocated (at run time) with some fixed size, such as abc[10], which in C means ind
HP INTERNAL USE ONLY page 77

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

ze of
ord,
mory.
ine’s

in a
t’s not
bsent,

, or
ys.

xes.

igned
bit
0..9 are valid. An unbounded array is one where the size of the array is only limited by the si
the index. On a 32-bit system, for Judy1 and JudyL, where the index is a native machine w
this means 32 bits, or indexes 0..2^32-1. For JudySL, this means any string you can fit in me
So unbounded doesn’t mean infinite, it means not arbitrarily bounded at less than the mach
limits.

Uncompressed branch node: A simple array of 256 JPs, including null JPs for unpopulated
subexpanses. See ‘‘Uncompressed Branches’’ on page 37.

Valid/invalid [index] : A valid index is one that appears in a index set; that is, it’s set or stored
Judy array. An invalid index is one that could appear in the index set but does not; that is, i
currently stored in a Judy array. There are many synonyms for each word, such as: present/a
set/unset, stored/free, full/empty.

Variable-size index: A key to an array-like data structure that handles a variety of index sizes
possibly unbounded sizes. Bitstrings and character strings are examples of variable-size ke
JudySL is an array-like API implemented as a meta-trie that supports character string inde

Vertical compression: See Level Compression and Digital Tree.

Word : A unit of memory that is the same size as a pointer to pointer to void, and/or an uns
long, in native C; typically 32 or 64 bits today. PA-RISC and IPF hardware support both 32-
and 64-bit programs depending on compilation options.“If any word is improper at the end of a
sentence, a linked verb is.” -- Safire
page 78 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

l

Appendix C: Judy Build and Delivery Key Control and Data
Flows

Here on one (busy) page is an overview of all the Judy nightly build and occasional manua
delivery steps... {HPUX only}
HP INTERNAL USE ONLY page 79

Working on Judy Judy IV Shop Manual August 5, 2002 8:27 pm

rs.

ta in
ever,
tines,

. Hash
thms
most

o go.
blem.

is the
f

yV is
ble
Appendix D: Some of the Inventor’s Thoughts About Judy

For what it’s worth, here’s something written in July 2000 by the inventor of Judy...

For me, Judy has been a fascinating exploration of numbers or rather collections of numbe

When I, as a programmer, was faced with storing and retrieving a collection of numbers or da
a program, there were many published algorithms available for accomplishing this task. How
when it came to getting bug-free code, not much was available. In libc.a there are a few rou
but they often seemed awkward to use or slow or both.

In my years as a programmer I have seen countless mistakes in applying these algorithms
tables that are static or too small, hash algorithms with long synonym chains, sorting algori
with degenerate behavior, binary search algorithms that perform poorly, and remarkably, the
commonly found reason for poor performance problems -- the linear search.

The code for well established algorithms is generally not available out of the box and ready t
This is because code modifications are frequently needed to make the algorithm fit the pro

The Judy algorithm/code is an attempt to solve these shortfalls. Judy is:

● opaque -- no initialization, synonyms, dimensioning, or hashing

● scalable -- uses memory incrementally with population memory

● efficient -- uses compression for both speed and memory utilization

● naturally sorted -- allowing very fast neighbor searches

● counting1 -- for very fast coalescing queues or stack depth problems

● ordinal determination2 -- haven’t found an application for this capability yet

Judy uses the “infinite array” archetype as a simple way to think of and use it.

For example, a Judy1 array can be thought of as an array of bits, where the ordinal of the bit
index. The ordinal or index can also be thought of as a key. A JudyL array can be thought o
exactly like a Judy1 array with the addition of an associated ulong_t value with each bit. Jud
another (hypothetical, not yet implemented) variation where the associated value is of varia
size.

1. Counting is implemented by determining the ordinal of the two passed indexes (keys) in a Judy array,
then returning the difference of their ordinals + 1 (actually plus or minus the presence/absence of the two
passed indexes themselves).
2. It would be possible to pass an ordinal (a partial count of number of indexes stored in a Judy array) and
return the index (and/or value) mapping to that ordinal. (In fact we implemented this later as
Judy*ByCount().) The trivial example I can think of is finding the median index by passing the half count
(population) of the array, then I would know the median index (assuming an odd number of indexes in the
array).
page 80 HP INTERNAL USE ONLY

August 5, 2002 8:27 pm Judy IV Shop Manual Working on Judy

at are
orting
of the

 many
udy1
However, in a Judy1 array, the ordinals can also be thought of as a collection of numbers th
stored in sorted order, or even a compressed collection in sorted order. It is interesting that s
the numbers leads naturally to compression. For example, suppose one only stored the delta
numbers in sorted order. Then the delta would take fewer bits than the actual number. How
fewer bits is a function of how close the numbers are. Note that a very densely populated J
array takes very little memory.
HP INTERNAL USE ONLY page 81

	Judy IV Shop Manual
	Original author: Alan Silverstein, ajs@fc.hp.com
	Last update: 020131
	Quick public excerpts created 020805
	without rolling in other new material since 020131

	1. Introduction
	1.1 Document Purpose and Audience
	1.2 Document Title
	1.3 Brief Overview of Judy

	2. Background
	2.1 Arrays and Digital Trees
	2.1.1 Arrays and Alternatives
	2.1.2 Digital Trees

	2.2 Some “Judy Physics”
	2.2.1 Software Relativity (Time Versus Space)
	2.2.1.1 Optimal Versus Suboptimal
	2.2.1.2 Practice Versus Theory

	2.2.2 The Caching Cliff
	2.2.2.1 Why Cache?
	2.2.2.2 Hashing Versus Caching

	2.2.3 Beating the Curve
	2.2.3.1 Digital Trees
	Table 1: Cache fills for different-width digital trees

	2.2.3.2 The Bytes/Index Metric
	2.2.3.3 Compressed Digital Trees
	Table 2: Judy object types

	2.2.3.4 Judy Population/Expanse Organization and Growth

	2.2.4 Beyond Beating the Curve
	2.2.4.1 Judy Dynamic Ranges
	Table 3: Judy Time/Space Performance

	3. Smarter Digital Trees
	3.1 Judy Compression Tricks

	4. Judy IV Data Structures
	4.1 Preliminary Notes
	4.2 Judy Array Pointer (JAP)
	Table 4: Judy Array Pointer (JAP) Type values

	4.3 Root-Level Leaves
	4.4 Judy Population/Memory Node (JPM)
	4.5 Judy Branches
	4.5.1 Linear Branches
	4.5.2 Bitmap Branches
	4.5.3 Uncompressed Branches

	4.6 Judy Pointer (JP)
	4.6.1 Basic JP Data Structure
	4.6.2 Decode and Population Fields
	4.6.3 JP Type Field
	4.6.3.1 Null JP
	4.6.3.2 Branch JP
	4.6.3.3 Leaf JP
	4.6.3.3.1 Bitmap Leaf JP

	4.6.3.4 Immediate Indexes JP
	Table 5: Populations of Immediate JPs

	4.6.3.5 Full Expanse JP

	4.7 Linear Leaves
	Table 6: Populations of Linear Leaves

	4.8 Bitmap Leaves
	4.9 Symmetries

	5. Usage of Data Structures
	6. Machine Dependencies
	7. Working on Judy
	7.1 Source, Intermediate, and Delivered Files
	1. Intermediate files, which are not delivered to customers, and
	2. Delivered files, which are shipped by some means.

	7.2 History Manager (SoftCM)
	7.2.1 Convenient Shortcuts

	7.3 Makefile
	7.3.1 Makefile Concepts
	7.3.2 Using makelog
	7.3.3 Useful Parameters and Targets
	Table 7: Judy Makefile Environment Parameters
	Table 8: Judy Makefile Useful Targets

	7.4 Running and Debugging Judy
	7.4.1 Linking
	7.4.2 Debugging
	7.4.3 Code Coverage
	7.4.4 Regression Tests
	7.4.4.1 Regression Tests -- Examples
	7.4.4.2 Regression Tests -- Checkpointing

	7.5 Delivering Judy

	Appendix A: Examples of Judy Trees
	Appendix B: Glossary/Lexicon
	Appendix C: Judy Build and Delivery Key Control and Data Flows
	Appendix D: Some of the Inventor’s Thoughts About Judy

