
http://www.hp.com/go/judy/ Copyright 2002 Hewlett -Packard Co Page 1 of 4

Application Note: Value Sums
6/22/2001

Problem

How can the sum of a set of array values over large, arbitrary, spans of data quickly be
determined? That is, how can the sum be determined faster than summing each
individual value?

Explanation

JLC() (the JudyLCount() macro) allows you to count the number of data elements
(indexes) in a JudyL array between any two indexes. However, there is no function to
sum the element values within this span of data. The summing of values between any
two indexes allows you to compute the data intensity (or density) of that value over the
given index range.

Suppose that each JudyL array value records the number of times a corresponding index
was inserted. Then a sum of the values between any pair of indexes reveals the density of
indexes seen in that range.

This might be useful, say, to look for "massive clusters" of user data points (indexes).
Suppose each index is the IP address of a client system, and each value is the number of
server requests initiated by that IP address. Counting by values can be used to find
"highly active" subnets.

Or, suppose that each index represents a code address in a software program, and each
value is the number of "hits" from a program counter sampling mechanism. Counting by
values can be used to isolate "hot" code sequences for performance tuning.

Solution

Consider an array with the following indexes and values (missing indexes have an
implied value of 0):

http://www.hp.com/go/judy/ Copyright 2002 Hewlett -Packard Co Page 2 of 4

The data show a small "blip" between indexes 5 and 8,
an insignificant isolated hit at index 20, an interesting
cluster between indexes 100 and 106, and an isolated
spike at index 200.

Using current techniques, one could visit each index
and sum the values, yielding a grand total of 50.
Successive subsections could be traversed to obtain
subsection sums and eventually locate the areas of high
density. To make this brute force method of successive
summing work well over large numbers of values you

need a very fast value counting technique.

Now consider the same array using the base-2 (binary) representation of the values.

The sum of the values can be calculated
by summing each base-2 column,
multiplying that column sum by the
appropriate power of 2 (1, 2, 4, 8, ...)
and summing the result. (Note that
multiplying by powers of 2 is
implemented very efficiently by bit
shifting.)

Starting with the rightmost column, the grand total is represented as:

 (4 * 2 0) + (7 * 21) + (2 * 22) + (3 * 23) = 50

To sum the values between indexes 100 and 110:

 (2 * 2 0) + (4 * 21) + (2 * 22) + (2 * 23) = 34

Summing a column of the base-2 representation is the same as counting the number of
indexes of that column that contain non-zero values. If, instead of storing the values in a
JudyL array, they are stored as columns in separate Judy1 bit arrays, then each column
sum can be achieved by using the fast index counting already present in the current Judy1
implementation. Using this method, a value count between two indexes in this "striped"
array of 32-bit values can be achieved with at most 32 calls to the J1C() (Judy1Count())

Index Value
5 1
6 2
8 2

20 1
100 2
102 10
103 14
105 7
106 1
200 10

Index
Value

(base-10)
Value

(base-2)
5 1 1
6 2 1 0
8 2 1 0

20 1 1
100 2 1 0
102 10 1 0 1 0
103 14 1 1 1 0
105 7 1 1 1
106 1 1
200 10 1 0 1 0

Column sum 3 2 7 4

http://www.hp.com/go/judy/ Copyright 2002 Hewlett -Packard Co Page 3 of 4

function, with subsequent shifting and adding of the results. You can see that there is
nothing magic about 32 bits in this context. You could have 51 bit counters or 3 bit
counters if you wish.

The advantage of these “striped” array counters becomes apparent when you consider
very highly populated arrays where the time to visit each index and sum the value
becomes prohibitively expensive. The cost of visiting each in dex increases linearly with
the population of the array. The time required by the “striped” method grows at a much
slower logarithmic rate because it uses the fast index counting already present in the Judy
design.

Caveat

The cost for this fast counting is the time for incrementing new values in a “striped” array
as well as the space cost of those arrays. Also, the “fast” count may be slower than
simply counting each value in an array if the number of values is very small. Clearly, the
benefits of this technique are very application dependent. Profile, wisely.

Example Code

This example code shows two functions, increment() and count().

The increment() function takes an index and increments the value associated with that
index. It implements a "striped" binary counter across 32 Judy1 arrays. The average
number of Judy1 arrays that are modified is 2.

#define CBITS 32 /* counter bits */
Pvoid_t parray_exp[CBITS]; /* initialized to 0 */
long
increment(Word_t index)
{
 int bit, rv;
 for (bit = 0; bit < CBITS; ++bit) {
 J1S(rv, parray_exp[bit], index);

 if (rv == 1)break; /* was unset; now set */

 J1U(rv, parray_exp[bit], index); /* was set; now unset */
 }
 if (bit >= CBITS) {
 printf("overflow\n");
 exit(2);
 }
 return 0;
}

http://www.hp.com/go/judy/ Copyright 2002 Hewlett -Packard Co Page 4 of 4

The increment algorithm can be generalized as: Starting at the LSB, toggle the bit; if the
new value is 1 then end, else move left to the next bit and repeat.

The count() function takes two indexes and returns the sum of the values contained
between those two indexes including any values associated with the indexes themselves.

Word_t
count(Word_t Index1, Word_t Index2){

 Word_t rv, total = 0;
 int bit;

 for (bit = 0; bit < CBITS; ++bit) {

 if (parray_exp[bit] != (Pvoid_t)NULL){
 J1C(rv, parray_exp[bit], Index1, Index2);
 total += (rv << bit);
 }
 }
 return (Word_t)total;
 }

