
http://www.hp.com/go/judy Copyright 2002 Hewlett-Packard Co Page 1 of 2

Application Note: Associative Array (a.k.a. JudySL)
6/22/2001

Problem
How did the Judy authors use JudyL to create an associative array (JudySL)?

Solution
Break a null-terminated string into a sequence of (32/64-bit) words and build a tree of
JudyL arrays with those words as indexes to represent the unique prefix of every string.
Each tree leaf node is a pointer to the unique string suffix (a string index can also end
without a leaf node). This is how JudySL was implemented.

Example
Let’s store two strings into a JudySL array. The strings are “Hello world” and “Hello
there son”.

First, think of these strings as if they were composed of a sequence of machine words
rather than bytes. For this example, (assuming 32 bit words):

Word 1 Word 2 Word 3 Word 4
“Hell” “o wo” “rld”
“Hell” “o th” “ere ” “son”

After inserting these two strings into a JudySL array, the array (actually a tree) looks like:

 Head JudyL array
Key Value (pointer)
“Hell”

 JudyL array

Key Value (ptr)
“o th”
“o wo” Heap with unique suffixes

“ere son”
“rld”

http://www.hp.com/go/judy Copyright 2002 Hewlett-Packard Co Page 2 of 2

Critical to this method is the ability to tell the difference between a pointer to a JudyL
array and a pointer to other objects like the unique suffix string. This algorithm makes
use of the fact that a pointer to a Judy array contains extra information that encodes the
type of Judy array being pointed to:

 if ((JudyArrayPointer & JLAP_MASK) == JLAP_INVALID)
 JudyArrayPointer does not point to a Judy array
 else
 JudyArrayPointer does point to a Judy array

JLAP_INVALID and JLAP_MASK are defined in Judy.h. This little known feature only
works for a pointer to a JudyL array (or a JudySL array which is a tree of JudyL arrays),
not for a Judy1 array.

In addition to “normal” associative array operations (random insertions and deletions),
JudySL can be used to sort by inserting strings into a JudySL array and then reading them
back out with JSLF() and JSLN() (the JudySLFirst() and JudySLNext() macros).
This is typically faster than using qsort(3C) or sort(1).

