
http://www.hp.com/go/judy/ Copyright 2002 Hewlett -Packard Co Page 1 of 2

Application Note: Disk Workload Analyzer
6/22/2001

Problem

How does disk cache size affect performance for accessing large (terabyte or greater)
disk units? Or at a more detailed level, how can we rapidly count the number of unique
disk I/O requests that take place between any two requests for the same disk address?

Solution

Let the “time” of a disk reference be the sequence number of that reference within a disk
address trace. Use a JudyL array to look up a given disk address and retrieve the “time”
(i.e. sequence number) of the last reference. Then look up this “time” in a Judy1 array
and count the number of unique references between then and the last reference.

Example

Let’s process a disk trace that contains the following data. The sequence number
wouldn’t really appear in the data but is implied by the order in which the data is read:

After all this data is loaded into our two Judy arrays we end up with:

JudyL Index (key) Value Judy1 Index
Disk address Sequence # (bit set)

27 6 1
100 7 4

5466 4 5
12121 5 6
98321 1 7

Let’s say the next address to process is 5466 again. We look up 5466 in the JudyL array
and retrieve its last “time” of 4. Next, using J1C() (the Judy1Count() macro), we count
from 4 to the end of the Judy1 array. Since J1C() calls are inclusive, we get the answer
4, which is the number of unique disk references between now and the last time 5466
was referenced.

Sequence number Disk address
1 98321
2 12121
3 27
4 5466
5 12121
6 27
7 100

http://www.hp.com/go/judy/ Copyright 2002 Hewlett -Packard Co Page 2 of 2

In a real application where this technique was used, the Judy arrays were hundreds of
millions of elements long and this method sped up the overall application by 100X. This
speedup was due to the speed of J1C() compared to the original application, which
counted each item in the stack of disk references to determine the “depth” of the previous
reference.

Example Code

 while (Get the next block number accessed)
 {
 int Return;

// Insert the Block into Block array

 JLI(PPBlock, BlockArray, Block);

// Is this the first time this Block accessed?
 if (*PPBlock == 0)
 {
// Allocate a struct for it
 PBlock = AllocBlockStruct();

// Use JudyL Value as pointer to the block struct
 *PPBlock = PBlock;

// And stuff with goodies
 PBlock->RefCnt = 0;
 PBlock->DistanceSum = 0;
 }
 else // Second plus access to this block
 {
 Word_t Distance;

// Count the number of references to this block
 PBlock->RefCnt += 1;

// Count number of stack entries from old to end of stack
 J1C(Distance, StackArray, PBlock->SeqNum, ~0);

// Sum the distances for an overall average
 PBlock->DistanceSum += Distance;

// Delete the old reference from the stack
 J1U(Return, StackArray, PBlock->SeqNum);

 assert(Return == 1);
 }
// Save new reference number for next appearance
 PBlock->SeqNum = TotalBlocks;

// And put new sequence number on the Stack
 J1S(Return, StackArray, TotalBlocks);

// Count unique blocks
 TotalBlocks++;
 }

